1
|
Guo B, He X. The Mechanism of Bisphenol S-Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning. J Appl Toxicol 2025; 45:1043-1055. [PMID: 39978769 DOI: 10.1002/jat.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovascular health, but the specific mechanisms remain unclear. This study aims to elucidate the effects of BPS on AS and the underlying mechanisms. Through an extensive search of databases such as ChEMBL, STITCH, SwissTargetPrediction, SuperPred, SEA, and GEO, we identified 34 potential targets related to BPS-induced AS. A target network was constructed using the STRING platform and Cytoscape software. GO and KEGG functional enrichment analysis using the DAVID database revealed that BPS may promote the occurrence of AS by interfering with critical biological processes such as glutathione metabolism, nitrogen metabolism, and tyrosine metabolism. This was followed by the selection of 4 core targets-aminopeptidase n (ANPEP), alcohol dehydrogenase 5 (ADH5), lysosomal pro-x carboxypeptidase (PRCP), and microsomal glutathione s-transferase 1 (MGST1)-using five machine learning methods. These core targets play a pivotal role in BPS-induced AS. Furthermore, molecular docking confirmed the tight binding between BPS and these core targets. In conclusion, this study provides a theoretical framework for understanding the molecular mechanisms of BPS-induced AS and contributes scientific evidence for the development of prevention and treatment strategies for cardiovascular diseases triggered by BPS exposure.
Collapse
Affiliation(s)
- Bing Guo
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan He
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
2
|
Medina Y, Fernandez N, Sierra MN, Castro Parodi M, Damiano AE. Nitrative stress-induced dysregulation of placental AQUAPORIN-9: A potential key player in preeclampsia pathogenesis. Placenta 2025:S0143-4004(25)00034-7. [PMID: 39955250 DOI: 10.1016/j.placenta.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Preeclampsia is associated with increased oxidative and nitrative stress, resulting in elevated protein nitration and potential functional impairment. Previously, we found an increased expression of AQP9 protein with a loss of function in preeclamptic placentas. However, the link between nitrative stress and AQP9 has not yet been explored. Here, we aimed to evaluate the effect of nitrative stress on placental AQP9 and its role in the pathogenesis of preeclampsia. In silico analysis was conducted on the amino acid sequences of AQP9 to identify potential nitration sites. Levels of 3NyT-AQP9 were assessed by immunoprecipitation in normal and preeclamptic placentas. AQP9 expression and function were evaluated by culturing normal placental explants with 0, 25, 50, 100, and 200 μM ONOO- to induce nitrative stress. Viability and integrity of the explants and stress markers were determined. Water uptake and utilization of lactate mediated by AQP9 were studied along with the molecular expression of AQP9 and 3-NyT-AQP9. The in silico analysis showed that AQP9 is more susceptible to nitration than other AQPs. The abundance of nitrated AQP9 significantly increased in preeclamptic placentas compared to normal ones (n = 4; p < 0.05). Peroxynitrite treatment also increased AQP9 protein expression without altering its gene expression and impaired the transport of water and lactate mediated by this protein. Our findings provide evidence that nitrative stress induces the nitration of AQP9 protein, leading to the accumulation of a non-functional protein in the syncytiotrophoblasts. Therefore, this altered protein may play a pivotal role in the pathogenesis of preeclampsia by disrupting cellular homeostasis.
Collapse
Affiliation(s)
- Yollyseth Medina
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Laboratorio de Biología de la Reproducción, Buenos Aires, Argentina
| | - Nazarena Fernandez
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Laboratorio de Biología de la Reproducción, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Matías N Sierra
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Laboratorio de Biología de la Reproducción, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Mauricio Castro Parodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Alicia E Damiano
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Laboratorio de Biología de la Reproducción, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Li L, Wang J, Zhang D, Deng L, Zhao X, Wang C, Yan X, Hu S. Resveratrol relieves myocardial ischemia-reperfusion injury through inhibiting AKT nitration modification. Redox Rep 2024; 29:2420564. [PMID: 39496098 PMCID: PMC11536672 DOI: 10.1080/13510002.2024.2420564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE The aim of this study was to clarify whether Protein kinase B (PKB)/AKT is nitrated in myocardial ischemia and reperfusion injury (MIRI) resveratrol (RSV)'s protective effect during this process. METHODS We blocked blood flow of the left coronary artery (LAD) of mice and used H9c2 cells under an oxygen-glucose deprivation (OGD) environment as animal and cell models of MIRI. N-methyl-D-aspartic acid receptor (NMDAR) inhibitor MK801, neuronal nitric oxide synthase (nNOS) inhibitor 7-NI and RSV were used as interventions. Nitration of proteins, infarction area, cardiomyocyte apoptosis and AKT nitration sites were detected during this study. RESULTS During in-vivo study, AKT nitration was induced through the NMDAR/nNOS/peroxynitrite (ONOO-) pathway, leading to decreased phosphorylation of AKT and increased cardiomyocyte apoptosis. AKT nitration was decreased and phosphorylation was elevated when administrated with RSV, MK801 and 7-NI. In in-vitro study, AKT nitration and TUNEL positive cells was elevated when administrated with NO donor H9c2 cells after OGD/R, when administrated with RSV, MK801 and 7-NI, AKT nitration and apoptosis was deceased in H9c2 cells. Mass spectrometry revealed that nitration sites of AKT included 14 Tyrosine residues. DISCUSSION RSV could inhibit AKT nitration and elevated phosphorylation through suppressing NMDAR/nNOS/ONOO- pathway and further reduce the apoptosis of cardiomyocytes in of myocardial I/R.
Collapse
Affiliation(s)
- Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jiantao Wang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Dandan Zhang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Li Deng
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Chunqing Wang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xianliang Yan
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Emergency Medicine, Suining People's Hospital, Xuzhou, People’s Republic of China
| | - Shuqun Hu
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
4
|
Wojtacha JJ, Morawin B, Wawrzyniak-Gramacka E, Tylutka A, de Freitas AKE, Zembron-Lacny A. Endothelial Dysfunction with Aging: Does Sex Matter? Int J Mol Sci 2024; 25:12203. [PMID: 39596269 PMCID: PMC11594464 DOI: 10.3390/ijms252212203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress and inflammation accompany endothelial dysfunction that results from the excessive or uncontrolled production of reactive oxygen and nitrogen species (RONS) in older adults. This study was designed to assess the usefulness of serum oxi-inflammatory component combinations in vascular disease prediction and prevention with regard to sex. Women (n = 145) and men (n = 50) aged 72.2 ± 7.8 years participated in this project. The females demonstrated the elevated production of hydrogen peroxide (H2O2) and nitric oxide (NO) responsible for intravascular low-density lipoprotein oxidation. NO generation was enhanced in the women, but its bioavailability was reduced, which was expressed by a high 3-nitrotyrosine (3-NitroT) concentration. The relation of NO/3-NitroT (rs = 0.811, p < 0.001) in the women and NO/3-NitroT (rs = -0.611, p < 0.001) in the men showed that sex determines endothelial dysfunction. RONS generation in the women simultaneously promoted endothelial regeneration, as demonstrated by a ~1.5-fold increase in circulating progenitor cells. Inflammation-specific variables, such as the neutrophil-to-lymphocyte ratio, the systemic immune inflammation index, and the neutrophil-to-high-density lipoprotein (HDL) ratio, were reduced in the women and showed their diagnostic utility for clinical prognosis in vascular dysfunction, especially the C-reactive-protein-to-HDL ratio (AUC = 0.980, specificity 94.7%, sensitivity 93.3%, OR = 252, 95% CI 65-967, p < 0.001). This study is the first to have revealed sex-specific changes in the oxi-inflammatory response, which can generate the risk of cardiovascular events at an older age.
Collapse
Affiliation(s)
- Jakub Jozue Wojtacha
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Ana Karyn Ehrenfried de Freitas
- School of Health Science, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba 81280-330, PR, Brazil;
- Department of Cardiology, Hospital da Cruz Vermelha Brasileira Filial do Paraná, Av. Vicente Machado, 1280, R. Cap. Souza Franco, 50-Batel, Curitiba 80420-011, PR, Brazil
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| |
Collapse
|
5
|
Zhao W, Chen K, Zhang J, Zhang M, Guo J, Xie D, Xu J, Tan M. Multi-step HPLC fractionation enabled in-depth and unbiased characterization of histone PTMs. J Chromatogr A 2024; 1736:465368. [PMID: 39298927 DOI: 10.1016/j.chroma.2024.465368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Histone post-translational modifications (PTMs) are critical epigenetic regulatory factors. Histone PTMs are highly dynamic and complicated, encompassing over 30 structurally diverse modifications across nearly 180 amino acid residues, which generated extensive information regarding histone marks. In proteomics-based characterization of histone PTMs, chemical derivatization and antibody-based affinity enrichment were frequently utilized to improve the identification depth. However, chemical derivatization suffered from the occurrence of side reactions, and antibody-based affinity enrichment focused on specific PTM types of interest. In this research, we developed a multi-step fractionation strategy for comprehensively unbiased detection of histone PTM sites. By combining protein-level fractionation with peptide-level alkaline and acid phase fractionation, we developed the Multidimensional Fractionation based Histone Mark Identification Technology (MudFIT) and increased PTM identification to a total of 264 histone PTM sites. To the best of our knowledge, this strategy achieved the most comprehensive characterization of histone PTM sites in a single proteomics study. Using the same starting amount of sample, MudFIT identified more Kac sites and Kac peptides than those in antibody-based acetylated peptide enrichment. Moreover, in addition to well-studied histone marks, we discovered 36 potential new histone PTM sites including H2BK116bu, H4R45me2, H1K63pr, and uncovered unknown histone PTM types like aminoadipic on lysine and nitrosylation on tyrosine. Our data provided a method and resource for in-depth characterization of histone PTM sites, facilitating further biological understanding of histone marks.
Collapse
Affiliation(s)
- Wensi Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital and Cancer Center, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jun Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingli Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
6
|
Boccatonda A, D’Ardes D, Moronti V, Santilli J, Cipollone A, Lessiani G, Di Gregorio N, Serra C, Piscaglia F, Ferri C, Cipollone F. From MASLD to PAD: Looking for Cardiovascular Disease Starting from Metabolic Status. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1781. [PMID: 39596967 PMCID: PMC11596241 DOI: 10.3390/medicina60111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Background: Peripheral artery disease (PAD) is still the least studied and evaluated form in clinical practice among atherosclerotic pathologies, despite the increased mortality and comorbidities related to it. The relationship between steatotic liver disease and an increased risk of cardiovascular disease has been extensively documented. Methods: The purpose of this work is to perform a review of the evidence linking NAFLD or MASLD to PAD, and examine possible clinical scenarios that arise from this new terminology. Results: The new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) includes the presence of cardiometabolic risk factors and hepatic steatosis without any other underlying causes of hepatic steatosis; this terminology, coined in the hepatological field, could generate confusion, especially in the initial stages of its diffusion and among different medical specialists. Conclusions: Some recent data in the literature have strengthened the evidence of a pathological link between hepatic metabolic alteration (NAFLD or MAFLD) and PAD.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.B.); (C.S.)
| | - Damiano D’Ardes
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| | - Veronica Moronti
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Jessica Santilli
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Alessia Cipollone
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| | | | - Nicoletta Di Gregorio
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Carla Serra
- Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.B.); (C.S.)
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Francesco Cipollone
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| |
Collapse
|
7
|
Castillo-Núñez Y, Almeda-Valdes P, González-Gálvez G, Arechavaleta-Granell MDR. Metabolic dysfunction-associated steatotic liver disease and atherosclerosis. Curr Diab Rep 2024; 24:158-166. [PMID: 38700793 DOI: 10.1007/s11892-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW To update information about the relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and atherosclerosis. This review emphasizes the potential mechanisms linking MASLD with atherosclerosis and the possible causal relationships between these conditions. RECENT FINDINGS An increased risk of cardiovascular disease is related to MASLD. Several molecular, cellular, and metabolic mechanisms have been described to explain the development of atherothrombosis in MASLD patients. These include atherogenic dyslipidemia, low-grade vascular inflammation, endothelial dysfunction, foam cell formation, proliferation of vascular smooth muscle cells, insulin resistance, gut microbiota dysbiosis, activation of renin-angiotensin and sympathetic nervous systems, hypercoagulability, and decreased fibrinolysis. Also, there is recent evidence suggesting an association between genetically driven liver fat and coronary heart disease mediated by the causal effect of apoB-containing lipoproteins. Several meta-analyses and systematic reviews have reported a strong association between MASLD and cardiovascular outcomes. MASLD is an important and independent risk factor for atherosclerosis development. Multiple mechanisms may be involved in this association. Further research is required to establish a causal association between MASLD and atherosclerosis.
Collapse
Affiliation(s)
- Yulino Castillo-Núñez
- Department of Endocrinology, Hospital Dr. Salvador B. Gautier, Santo Domingo, Dominican Republic.
| | - Paloma Almeda-Valdes
- Endocrinology and Metabolism Department, Metabolic Diseases Research Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Yin X, Ni G, Zhang X, Fu S, Li H, Gao Z. Tyrosine nitration of glucagon impairs its function: Extending the role of heme in T2D pathogenesis. J Inorg Biochem 2024; 255:112519. [PMID: 38507994 DOI: 10.1016/j.jinorgbio.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
Collapse
Affiliation(s)
- Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
9
|
Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, Wang G. Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism. World J Microbiol Biotechnol 2024; 40:198. [PMID: 38727952 DOI: 10.1007/s11274-024-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1β, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.
Collapse
Affiliation(s)
- Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Liao Xiaoling
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
10
|
Stevens TL, Cohen HM, Garbincius JF, Elrod JW. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:500-514. [PMID: 39185387 PMCID: PMC11343476 DOI: 10.1038/s44161-024-00463-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Shan D, Xu D, Hu S, Qi P, Lu J, Wang D. LC-MS/MS based metabolomic analysis of serum from patients with cerebrovascular stenosis. J Pharm Biomed Anal 2023; 235:115608. [PMID: 37527609 DOI: 10.1016/j.jpba.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Cerebrovascular stenosis (CVS) is the main cause of ischemic stroke, which greatly threatens human life. Hence, it's important to perform early screenings for CVS. Metabolomics is an emerging omics approach that has great advantages in disease screening and diagnosis. Therefore, we aim to elucidate the correlation between CVS and metabolomics, which can aid in conducting CVS screening at an early stage. Patients with CVS in Beijing Hospital were included in the study. A total of 36 participants, including 18 patients diagnosed with CVS and 18 healthy individuals, were recruited at Beijing Hospital between May 2022 and October 2021. The serum samples were analyzed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, multivariate statistical methods, including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed. Differential metabolites were obtained and demonstrated by volcano plot and heatmap. The study recruited 36 participants, including 18 patients with CVS and 18 healthy participants. A total of 150 metabolites were identified. Multivariate statistical analysis revealed significant differences between patients and healthy participants. Furthermore, 30 serum metabolites levels differed significantly between two groups. Differential metabolites were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis; primary bile acid biosynthesis, and other pathways. This study identified differential metabolites in patients with CVS and elucidated the relevant metabolic pathways. Thus, these findings aid in the study of the pathogenesis of CVS and its early diagnosis. DATA AVAILABILITY STATEMENT: The datasets generated for this study are available on request to the corresponding author.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Dingkang Xu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Hu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Qi
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
13
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
14
|
The Beneficial Role of Nrf2 in the Endothelial Dysfunction of Atherosclerosis. Cardiol Res Pract 2022; 2022:4287711. [PMID: 35600333 PMCID: PMC9119788 DOI: 10.1155/2022/4287711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious public health issue in China, accounting for more than 40% of all mortality, and it is the leading cause of death worldwide. Atherosclerosis is the pathological basis for much CVD, including coronary heart disease, acute myocardial infarction, and stroke. Endothelial dysfunction is an initiating and exacerbating factor in atherosclerosis. Recent research has linked oxidative stress and mitochondrial damage to endothelial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor with antioxidant effects that is strongly connected to several CVDs. However, the mechanism by which Nrf2 reduces CVD is unknown. Research indicates that Nrf2 improves endothelial function by resisting oxidative stress and mitochondrial damage, thereby delaying atherosclerosis. This article examines the mechanisms and potential targets of Nrf2 affecting endothelial cell function to improve atherosclerosis and to provide ideas for the development of new CVD treatments.
Collapse
|