1
|
Chen X, Caradeuc C, Bertho G, Lucas-Torres C, Giraud N. Pure Shift NMR with Solvent Suppression: A Robust and General Method for Determining Quantitative Metabolic Profiles in Biofluids. Anal Chem 2025; 97:3945-3954. [PMID: 39905794 DOI: 10.1021/acs.analchem.4c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Ultrahigh-resolution pure shift NMR has recently been shown as a promising approach for providing quantitative metabolic profiles that can be used to study the metabolic footprint left by cancer cells in their aqueous growth medium. In this approach, a library of reference 1H pure shift spectra with water suppression was implemented to determine metabolite concentrations from the NOESY-presat-PSYCHE-SAPPHIRE spectrum recorded on the extracellular medium. This achievement clearly called for a generalization of a quantification method relying on ultrahigh-resolution data to other biological samples of interest (urine, plasma, tissue extracts, etc.), which requires evaluating the robustness of the analytical workflow. We have first addressed the influence of sample preparation on the quality of metabolite quantification. The quantification performed on a model mixture of metabolites prepared under different conditions shows good linearity, trueness, and precision, which highlights the high reproducibility of the proposed analytical protocol regardless of the physicochemical conditions in the sample. Second, we have successfully implemented this quantification protocol to determine metabolite levels in real urine and plasma samples, thereby paving the way for the use of the library of pure shift reference spectra for accurate and quantitative metabolic profiling of a broad range of aqueous samples.
Collapse
Affiliation(s)
- Xi Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Cédric Caradeuc
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Gildas Bertho
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Covadonga Lucas-Torres
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Nicolas Giraud
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
2
|
Fallah S, Asri N, Nikzamir A, Ahmadipour S, Sadeghi A, Rostami K, Rostami-Nejad M. Investigating the Impact of Vitamin A and Amino Acids on Immune Responses in Celiac Disease Patients. Diseases 2024; 12:13. [PMID: 38248364 PMCID: PMC10814138 DOI: 10.3390/diseases12010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Amino acids (AAs) and vitamin imbalances are observed in celiac disease (CD). This study evaluated the plasma profile of vitamin A and AAs and the expression level of IL-2, IL-4, IL-10, IL-12 and TGFβ in CD patients. A total of 60 children and adults with CD and 40 healthy controls (HCs) were included. The plasma profile of Vitamin A and AAs and the mRNA expression levels of target genes were assessed. Active adult patients exhibited a decrease in Vitamin A levels (p = 0.04) and an increase in IL-2 (p = 0.008) and IL-12 (p = 0.007) mRNA expression compared to the HCs. The treated adult patients showed elevated Serine (p = 0.003) and Glycine (p = 0.04) levels, as well as increased IL-12 (p < 0.0001) mRNA expression, and a decrease in Tryptophan (p = 0.04) levels relative to the controls. Additionally, the treated adult patients had higher plasma levels of Threonine compared to both the active (p = 0.04) and control (p = 0.02) subjects, and the increased mRNA expression of IL-4 (p = 0.01) in comparison to the active patients. In active children with CD, the IL-2 mRNA level was found to be higher than in the controls (p < 0.0001) and in the treated children (p = 0.005). The treated children with CD exhibited decreased plasma levels of Tryptophan (p = 0.01) and Isoleucine (p = 0.01) relative to the controls, and the increased mRNA expression of TGFβ (p = 0.04) relative to the active patients. Elevated levels of specific AAs (Serine, Glycine, Threonine) in the treated CD patients suggested their potential to improve intestinal damage and inflammation, while decreased levels of Tryptophan and Isoleucine highlighted the need for dietary intervention.
Collapse
Affiliation(s)
- Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (S.F.); (A.N.)
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Abdolrahim Nikzamir
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (S.F.); (A.N.)
| | - Shokoufeh Ahmadipour
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North 4442, New Zealand
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| |
Collapse
|
3
|
Li T, Feng Y, Wang C, Shi T, Abudurexiti A, Zhang M, Gao F. Assessment of causal associations among gut microbiota, metabolites, and celiac disease: a bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1087622. [PMID: 37250054 PMCID: PMC10213403 DOI: 10.3389/fmicb.2023.1087622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND A growing number of studies have implicated that gut microbial abundance and metabolite concentration alterations are associated with celiac disease (CD). However, the causal relationship underlying these associations is unclear. Here, we used Mendelian randomization (MR) to reveal the causal effect of gut microbiota and metabolites on CD. METHODS Genome-wide association study (GWAS) summary-level data for gut microbiota, metabolites, and CD were extracted from published GWASs. Causal bacterial taxa and metabolites for CD were determined by two-sample MR analyses. The robustness of the results was assessed with sensitivity analyses. Finally, reverse causality was investigated with a reverse MR analysis. RESULTS Genetically, increased genus Bifidobacterium was potentially associated with higher CD risk (odds ratio [OR] = 1.447, 95% confidence interval [CI]: 1.054-1.988, p = 0.022) while phylum Lentisphaerae (OR = 0.798, 95% CI: 0.648-0.983, p = 0.034) and genus Coprobacter (OR = 0.683, 95% CI: 0.531-0.880, p = 0.003) were related to lower CD risk. Moreover, there were suggestive associations between CD and the following seven metabolites: 1-oleoylglycerophosphoethanolamine, 1-palmitoylglycerophosphoethanolamine, 1,6-anhydroglucose, phenylacetylglutamine, tryptophan betaine, 10-undecenoate, and tyrosine. Sensitivity analyses deemed the results reliable without pleiotropy. CONCLUSION We investigated the causal relationships between gut microbiota, metabolites, and CD with two-sample MR. Our findings suggest several novel potential therapeutic targets for CD treatment. Further understanding of the underlying mechanism may provide insights into CD pathogenesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Chun Wang
- Department of Pathology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Mengxia Zhang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Shi T, Feng Y, Liu W, Liu H, Li T, Wang M, Li Z, Lu J, Abudurexiti A, Maimaitireyimu A, Hu J, Gao F. Characteristics of gut microbiota and fecal metabolomes in patients with celiac disease in Northwest China. Front Microbiol 2022; 13:1020977. [PMID: 36519162 PMCID: PMC9742481 DOI: 10.3389/fmicb.2022.1020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 06/30/2024] Open
Abstract
Celiac disease (CD) is an autoimmune small bowel disease. The pattern of gut microbiota is closely related to dietary habits, genetic background, and geographical factors. There is a lack of research on CD-related gut microbiota in China. This study aimed to use 16S rDNA sequencing and metabolomics to analyze the fecal microbial composition and metabolome characteristics in patients diagnosed with CD in Northwest China, and to screen potential biomarkers that could be used for its diagnosis. A significant difference in the gut microbiota composition was observed between the CD and healthy controls groups. At the genus level, the abundance of Streptococcus, Lactobacillus, Veillonella, and Allisonella communities in the CD group were increased (Q < 0.05). Furthermore, the abundance of Ruminococcus, Faecalibacterium, Blautia, Gemmiger, and Anaerostipes community in this group were decreased (Q < 0.05). A total of 222 different fecal metabolites were identified in the two groups, suggesting that CD patients have a one-carbon metabolism defect. Four species of bacteria and six metabolites were selected as potential biomarkers using a random forest model. Correlation analysis showed that changes in the gut microbiota were significantly correlated with changes in fecal metabolite levels. In conclusion, the patterns of distribution of gut microbiota and metabolomics in patients with CD in Northwest China were found to be unique to these individuals. This has opened up a new way to explore potential beneficial effects of supplementing specific nutrients and potential diagnostic and therapeutic targets in the future.
Collapse
Affiliation(s)
- Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Weidong Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Huan Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ziqiong Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiajie Lu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ayinuer Maimaitireyimu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiali Hu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| |
Collapse
|