1
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Schurer A, Glushakow-Smith SG, Gritsman K. Targeting chromatin modifying complexes in acute myeloid leukemia. Stem Cells Transl Med 2025; 14:szae089. [PMID: 39607901 PMCID: PMC11878770 DOI: 10.1093/stcltm/szae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.
Collapse
Affiliation(s)
- Alexandra Schurer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Shira G Glushakow-Smith
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, United States
- Center for Tumor Dormancy, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461,United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
3
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Eisenhuth N, Rauh ET, Mitnacht M, Debus A, Schleicher U, Butter F, Pruzinova K, Volf P, Janzen CJ. The histone methyltransferase DOT1B is dispensable for stage differentiation and macrophage infection of Leishmania mexicana. Front Cell Infect Microbiol 2025; 14:1502339. [PMID: 39902184 PMCID: PMC11788152 DOI: 10.3389/fcimb.2024.1502339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Conserved histone methyltransferases of the DOT1 family are involved in replication regulation, cell cycle progression, stage differentiation, and gene regulation in trypanosomatids. However, the specific functions of these enzymes depend on the host evasion strategies of the parasites. In this study, we investigated the role of DOT1B in Leishmania mexicana, focusing on life cycle progression and infectivity. In contrast to Trypanosoma brucei, in which DOT1B is essential for the differentiation of mammal-infective bloodstream forms to insect procyclic forms, L. mexicana DOT1B (LmxDOT1B) is not critical for the differentiation of promastigotes to amastigotes in vitro. Additionally, there are no significant differences in the ability to infect or differentiate in macrophages or sand fly vectors between the LmxDOT1B-depleted and control strains. These findings highlight the divergence of the function of DOT1B in these related parasites, suggesting genus-specific adaptations in the use of histone modifications for life cycle progression and host adaptation processes.
Collapse
Affiliation(s)
- Nicole Eisenhuth
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elisa Theres Rauh
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Melina Mitnacht
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Andrea Debus
- Microbiology Institute-Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University, Erlangen, Germany
| | - Ulrike Schleicher
- Microbiology Institute-Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University, Erlangen, Germany
| | - Falk Butter
- Proteomics und Systems Biology, Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald, Germany
| | | | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czechia
| | - Christian J. Janzen
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Heikamp EB, Martucci C, Henrich JA, Neel DS, Mahendra-Rajah S, Rice H, Wenge DV, Perner F, Wen Y, Hatton C, Armstrong SA. NUP98 fusion proteins and KMT2A-MENIN antagonize PRC1.1 to drive gene expression in AML. Cell Rep 2024; 43:114901. [PMID: 39475509 PMCID: PMC11780541 DOI: 10.1016/j.celrep.2024.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Control of stem cell-associated genes by Trithorax group (TrxG) and Polycomb group (PcG) proteins is frequently misregulated in cancer. In leukemia, oncogenic fusion proteins hijack the TrxG homolog KMT2A and disrupt PcG activity to maintain pro-leukemogenic gene expression, though the mechanisms by which oncofusion proteins antagonize PcG proteins remain unclear. Here, we define the relationship between NUP98 oncofusion proteins and the non-canonical polycomb repressive complex 1.1 (PRC1.1) in leukemia using Menin-KMT2A inhibitors and targeted degradation of NUP98 fusion proteins. Eviction of the NUP98 fusion-Menin-KMT2A complex from chromatin is not sufficient to silence pro-leukemogenic genes. In the absence of PRC1.1, key oncogenes remain transcriptionally active. Transition to a repressed chromatin state requires the accumulation of PRC1.1 and repressive histone modifications. We show that PRC1.1 loss leads to resistance to small-molecule Menin-KMT2A inhibitors in vivo. Therefore, a critical function of oncofusion proteins that hijack Menin-KMT2A activity is antagonizing repressive chromatin complexes.
Collapse
Affiliation(s)
- Emily B Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Cynthia Martucci
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Jill A Henrich
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dana S Neel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | | | - Hannah Rice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Daniela V Wenge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
7
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
8
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Abla O, Ries RE, Triche T, Gerbing RB, Hirsch B, Raimondi S, Cooper T, Farrar JE, Buteyn N, Harmon LM, Wen H, Deshpande AJ, Kolb EA, Gamis AS, Aplenc R, Alonzo T, Meshinchi S. Structural variants involving MLLT10 fusion are associated with adverse outcomes in pediatric acute myeloid leukemia. Blood Adv 2024; 8:2005-2017. [PMID: 38306602 PMCID: PMC11024924 DOI: 10.1182/bloodadvances.2023010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
ABSTRACT MLLT10 gene rearrangements with KMT2A occur in pediatric acute myeloid leukemia (AML) and confer poor prognosis, but the prognostic impact of MLLT10 in partnership with other genes is unknown. We conducted a retrospective study with 2080 children and young adults with AML registered on the Children's Oncology Group AAML0531 (NCT00372593) and AAML1031 trials (NCT01371981). Transcriptome profiling and/or karyotyping were performed to identify leukemia-associated fusions associated with prognosis. Collectively, 127 patients (6.1%) were identified with MLLT10 fusions: 104 (81.9%) with KMT2A::MLLT10, 13 (10.2%) with PICALM::MLLT10, and 10 (7.9%) X::MLLT10: (2 each of DDX3X and TEC), with 6 partners (DDX3Y, CEP164, SCN2B, TREH, NAP1L1, and XPO1) observed in single patients. Patients with MLLT10 (n = 127) demonstrated adverse outcomes, with 5-year event-free survival (EFS) of 18.6% vs 49% in patients without MLLT10 (n = 1953, P < .001), inferior 5-year overall survival (OS) of 38.2% vs 65.7% (P ≤ .001), and a higher relapse risk of 76% vs 38.6% (P < .001). Patients with KMT2A::MLLT10 had an EFS from study entry of 19.5% vs 12.7% (P = .628), and an OS from study entry of 40.4% vs 27.6% (P = .361) in those with other MLLT10 fusion partners. Patients with PICALM::MLLT10 had an EFS of 9.2% vs 20% in other MLLT10- without PICALM (X::MLLT10; P = .788). Patients with PICALM::MLLT10 and X::MLLT10 fusions exhibit a DNA hypermethylation signature resembling NUP98::NSD1 fusions, whereas patients with KMT2A::MLLT10 bear aberrations primarily affecting distal regulatory elements. Regardless of the fusion partner, patients with AML harboring MLLT10 fusions exhibit very high-risk features and should be prioritized for alternative therapeutic interventions.
Collapse
Affiliation(s)
- Oussama Abla
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tim Triche
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - Betsy Hirsch
- Division of Laboratory Medicine, University of Minnesota Medical Center, Minneapolis, MN
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd Cooper
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Jason E. Farrar
- Department of Pediatrics, Hematology-Oncology Section, Arkansas Children's Research Institute, Little Rock, AR
| | | | | | - Hong Wen
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Alan S. Gamis
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | | | - Todd Alonzo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
11
|
Barbosa K, Deshpande A, Perales M, Xiang P, Murad R, Pramod AB, Minkina A, Robertson N, Schischlik F, Lei X, Sun Y, Brown A, Amend D, Jeremias I, Doench JG, Humphries RK, Ruppin E, Shendure J, Mali P, Adams PD, Deshpande AJ. Transcriptional control of leukemogenesis by the chromatin reader SGF29. Blood 2024; 143:697-712. [PMID: 38048593 PMCID: PMC10900139 DOI: 10.1182/blood.2023021234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.
Collapse
Affiliation(s)
- Karina Barbosa
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Marlenne Perales
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ping Xiang
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Rabi Murad
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Akula Bala Pramod
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anna Minkina
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Neil Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xue Lei
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Younguk Sun
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Adam Brown
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Diana Amend
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | | | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA
| | - Peter D. Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Aniruddha J. Deshpande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
12
|
Sepulveda GP, Gushchanskaia ES, Mora-Martin A, Esse R, Nikorich I, Ceballos A, Kwan J, Blum BC, Dholiya P, Emili A, Perissi V, Cardamone MD, Grishok A. DOT1L stimulates MYC/Mondo transcription factor activity by promoting its degradation cycle on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579191. [PMID: 38370658 PMCID: PMC10871221 DOI: 10.1101/2024.02.06.579191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Gian P. Sepulveda
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ekaterina S. Gushchanskaia
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Tessera Therapeutics, Somerville, MA, 02143, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Ruben Esse
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iana Nikorich
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: Research Unit, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Prakruti Dholiya
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
- Division of Computational Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: OHSU Knight Cancer Institute, School of Medicine, Portland, OR, 97239, USA
| | - Valentina Perissi
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria D. Cardamone
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Korro Bio Inc., Cambridge, MA, 02139, USA
| | - Alla Grishok
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Genome Science Institute, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
13
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
14
|
Wille CK, Neumann EN, Deshpande AJ, Sridharan R. DOT1L interaction partner AF10 controls patterning of H3K79 methylation and RNA polymerase II to maintain cell identity. Stem Cell Reports 2023; 18:2451-2463. [PMID: 37995701 PMCID: PMC10724070 DOI: 10.1016/j.stemcr.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Histone 3 lysine 79 methylation (H3K79me) is enriched on gene bodies proportional to gene expression levels and serves as a strong barrier for the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). DOT1L is the sole histone methyltransferase that deposits all three orders-mono (me1), di (me2), and tri (me3) methylation-at H3K79. Here, we leverage genetic and chemical approaches to parse the specific functions of orders of H3K79me in maintaining cell identity. DOT1L interacts with AF10 (Mllt10), which recognizes unmodified H3K27 and boosts H3K79me2/3 methylation. AF10 deletion evicts H3K79me2/3 and reorganizes H3K79me1 to the transcription start site to facilitate iPSC formation in the absence of steady-state transcriptional changes. Instead, AF10 loss redistributes RNA polymerase II to a uniquely pluripotent pattern at highly expressed, rapidly transcribed housekeeping genes. Taken together, we reveal a specific mechanism for H3K79me2/3 located at the gene body in reinforcing cell identity.
Collapse
Affiliation(s)
- Coral K Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Edwin N Neumann
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Wille CK, Zhang X, Haws SA, Denu JM, Sridharan R. DOT1L is a barrier to histone acetylation during reprogramming to pluripotency. SCIENCE ADVANCES 2023; 9:eadf3980. [PMID: 37976354 PMCID: PMC10656071 DOI: 10.1126/sciadv.adf3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Embryonic stem cells (ESCs) have transcriptionally permissive chromatin enriched for gene activation-associated histone modifications. A striking exception is DOT1L-mediated H3K79 dimethylation (H3K79me2) that is considered a positive regulator of transcription. We find that ESCs are depleted for H3K79me2 at shared locations of enrichment with somatic cells, which are highly and ubiquitously expressed housekeeping genes, and have lower RNA polymerase II (RNAPII) at the transcription start site (TSS) despite greater nascent transcription. Inhibiting DOT1L increases the efficiency of reprogramming of somatic to induced pluripotent stem cells, enables an ESC-like RNAPII pattern at the TSS, and functionally compensates for enforced RNAPII pausing. DOT1L inhibition increases H3K27 methylation and RNAPII elongation-enhancing histone acetylation without changing the expression of the causal histone-modifying enzymes. Only the maintenance of elevated histone acetylation is essential for enhanced reprogramming and occurs at loci that are depleted for H3K79me2. Thus, DOT1L inhibition promotes the hyperacetylation and hypertranscription pluripotent properties.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Xiaoya Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Johannessen JA, Formica M, Haukeland ALC, Bråthen NR, Al Outa A, Aarsund M, Therrien M, Enserink JM, Knævelsrud H. The human leukemic oncogene MLL-AF4 promotes hyperplastic growth of hematopoietic tissues in Drosophila larvae. iScience 2023; 26:107726. [PMID: 37720104 PMCID: PMC10504488 DOI: 10.1016/j.isci.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
MLL-rearranged (MLL-r) leukemias are among the leukemic subtypes with poorest survival, and treatment options have barely improved over the last decades. Despite increasing molecular understanding of the mechanisms behind these hematopoietic malignancies, this knowledge has had poor translation into the clinic. Here, we report a Drosophila melanogaster model system to explore the pathways affected in MLL-r leukemia. We show that expression of the human leukemic oncogene MLL-AF4 in the Drosophila hematopoietic system resulted in increased levels of circulating hemocytes and an enlargement of the larval hematopoietic organ, the lymph gland. Strikingly, depletion of Drosophila orthologs of known interactors of MLL-AF4, such as DOT1L, rescued the leukemic phenotype. In agreement, treatment with small-molecule inhibitors of DOT1L also prevented the MLL-AF4-induced leukemia-like phenotype. Taken together, this model provides an in vivo system to unravel the genetic interactors involved in leukemogenesis and offers a system for improved biological understanding of MLL-r leukemia.
Collapse
Affiliation(s)
- Julie A. Johannessen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Formica
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aina Louise C. Haukeland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Rojahn Bråthen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Amani Al Outa
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Aarsund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Helene Knævelsrud
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Gilan O, Talarmain L, Bell CC, Neville D, Knezevic K, Ferguson DT, Boudes M, Chan YC, Davidovich C, Lam EYN, Dawson MA. CRISPR-ChIP reveals selective regulation of H3K79me2 by Menin in MLL leukemia. Nat Struct Mol Biol 2023; 30:1592-1606. [PMID: 37679565 DOI: 10.1038/s41594-023-01087-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2. With CRISPR-ChIP, we identify all the nonredundant COMPASS complex members required for H3K4me3 and demonstrate that RNA polymerase II is dispensable for the maintenance of H3K4me3. As H3K79me2 has a putative oncogenic function in leukemia cells driven by MLL translocations, using CRISPR-ChIP we reveal a functional partitioning of H3K79 methylation into two distinct regulatory units: an oncogenic DOT1L complex directed by the MLL fusion protein in a Menin-dependent manner and a separate endogenous DOT1L complex, where catalytic activity is directed by MLLT10. Overall, CRISPR-ChIP provides a powerful tool for the unbiased interrogation of the mechanisms underpinning chromatin regulation.
Collapse
Affiliation(s)
- Omer Gilan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | - Laure Talarmain
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Neville
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kathy Knezevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel T Ferguson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- EMBL-Australia, Clayton, Victoria, Australia
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Izzo A, Akol I, Villarreal A, Lebel S, Garcia-Miralles M, Cheffer A, Bovio P, Heidrich S, Vogel T. Nucleophosmin 1 cooperates with the methyltransferase DOT1L to preserve peri-nucleolar heterochromatin organization by regulating H3K27me3 levels and DNA repeats expression. Epigenetics Chromatin 2023; 16:36. [PMID: 37759327 PMCID: PMC10537513 DOI: 10.1186/s13072-023-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| | - Ipek Akol
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Alejandro Villarreal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Laboratorio de Neuropatología Molecular, Facultad de Medicina, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - Shannon Lebel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Marta Garcia-Miralles
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Arquimedes Cheffer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
19
|
Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J, Gao Y. Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep 2023; 42:112885. [PMID: 37494186 DOI: 10.1016/j.celrep.2023.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Centromere localization of the chromosome passenger complex (CPC) is paramount for achieving accurate sister chromosome segregation in mitosis. Although it has been widely recognized that the recruitment of CPC is directly regulated by two histone codes, phosphorylation of histone H3 at threonine 3 (H3T3ph) and phosphorylation of histone H2A at threonine 120 (H2AT120ph), the regulation of CPC localization by other histone codes remains elusive. We show that dysfunction of disruptor of telomeric silencing 1 like (DOT1L) leads to mislocation of the CPC in prometaphase, caused by disturbing the level of H3T3ph and its reader Survivin. This cascade is initiated by over-dephosphorylation of H3T3ph mediated by the phosphatase RepoMan-PP1, whose scaffold RepoMan translocalizes to chromosomes, while the level of H3K79me2/3 is diminished. Together, our findings uncover a biological function of DOT1L and H3K79 methylation in mitosis and give insight into how genomic stability is coordinated by different histone codes.
Collapse
Affiliation(s)
- Dan Yang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanji He
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Renyan Li
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Zhenting Huang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingxu Shi
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongliang Deng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
He F, Xiao H, Cai Y, Zhang N. NSD1 promotes esophageal cancer tumorigenesis via HIF1α signaling. Cell Biol Toxicol 2023; 39:1835-1850. [PMID: 36522543 DOI: 10.1007/s10565-022-09786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Unlike angiogenesis in normal tissues, tumor angiogenesis is typically dysregulated, during which the HIF1/VEGFA signaling pathway plays a pivotal role. Solid tumors generate immature vessels, which promote tumor progression and treatment resistance. NSD1 can di-methylate histone 3 lysine 36 and regulate transcription factors binding to the promoters of various genes. However, the role of NSD1 in tumorigenesis remains elusive. Here, we evaluated the relationship between NSD1 signaling and HIF1 signaling. It was found that NSD1 transcriptionally regulates HIF1α expression by recruiting STAT3 molecule into the HIF1α promoter. In vivo xenograft experiments further confirmed that HIF1α and STAT3 maintenance is essential for NSD1-mediated tumor progression and angiogenesis. Therefore, the NSD1/STAT3/HIF1α signaling pathway may be a novel and effective treatment target for ESCA.
Collapse
Affiliation(s)
- Feng He
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Xiao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yixin Cai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Fan H, Wang F, Zeng A, Murison A, Tomczak K, Hao D, Jelloul FZ, Wang B, Barrodia P, Liang S, Chen K, Wang L, Zhao Z, Rai K, Jain AK, Dick J, Daver N, Futreal A, Abbas HA. Single-cell chromatin accessibility profiling of acute myeloid leukemia reveals heterogeneous lineage composition upon therapy-resistance. Commun Biol 2023; 6:765. [PMID: 37479893 PMCID: PMC10362028 DOI: 10.1038/s42003-023-05120-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to understand the lineage composition of AML cells at time of therapy resistance. Here we leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from eight patients at time of therapy resistance and following subsequent therapy to characterize their lineage landscape. Our findings reveal a complex lineage architecture of therapy-resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent, activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are also composed of cells primed for differentiated myeloid, erythroid and even lymphoid lineages. The heterogeneous lineage composition persists following subsequent therapy, with early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant AML cells are characterized not only by stem and progenitor states, but also by a continuum of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their therapy resistance by harboring different degrees of lineage-specific susceptibilities to therapy.
Collapse
Affiliation(s)
- Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alex Murison
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Bofei Wang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Okamoto K, Imamura T, Tanaka S, Urata T, Yoshida H, Shiba N, Iehara T. The Nup98::Nsd1 fusion gene induces CD123 expression in 32D cells. Int J Hematol 2023:10.1007/s12185-023-03612-z. [PMID: 37173550 DOI: 10.1007/s12185-023-03612-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The NUP98::NSD1 fusion gene is associated with extremely poor prognosis in patients with acute myeloid leukemia (AML). NUP98::NSD1 induces self-renewal and blocks differentiation of hematopoietic stem cells, leading to development of leukemia. Despite its association with poor prognosis, targeted therapy for NUP98::NSD1-positive AML is lacking, as the details of NUP98::NSD1 function are unknown. Here, we generated 32D cells (a murine interleukin-3 (IL-3)-dependent myeloid progenitor cell line) expressing mouse Nup98::Nsd1 to explore the function of NUP98::NSD1 in AML, including comprehensive gene expression analysis. We identified two properties of Nup98::Nsd1 + 32D cells in vitro. First, Nup98::Nsd1 promoted blocking of AML cell differentiation, consistent with a previous report. Second, Nup98::Nsd1 increased dependence on IL-3 for cell proliferation, due to overexpression of the alpha subunit of the IL-3 receptor (IL3-RA, also known as CD123). Consistent with our in vitro data, IL3-RA was also upregulated in samples from patients with NUP98::NSD1-positive AML. These results highlight CD123 as a potential new therapeutic target in NUP98::NSD1-positive AML.
Collapse
Affiliation(s)
- Kenji Okamoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Seiji Tanaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takayo Urata
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
23
|
Lin H, Cossu IG, Leu NA, Deshpande AJ, Bernt KM, Luo M, Wang PJ. The DOT1L-MLLT10 complex regulates male fertility and promotes histone removal during spermiogenesis. Development 2023; 150:dev201501. [PMID: 37082953 PMCID: PMC10259658 DOI: 10.1242/dev.201501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Histone modifications regulate chromatin remodeling and gene expression in development and diseases. DOT1L, the sole histone H3K79 methyltransferase, is essential for embryonic development. Here, we report that DOT1L regulates male fertility in mouse. DOT1L associates with MLLT10 in testis. DOT1L and MLLT10 localize to the sex chromatin in meiotic and post-meiotic germ cells in an inter-dependent manner. Loss of either DOT1L or MLLT10 leads to reduced testis weight, decreased sperm count and male subfertility. H3K79me2 is abundant in elongating spermatids, which undergo the dramatic histone-to-protamine transition. Both DOT1L and MLLT10 are essential for H3K79me2 modification in germ cells. Strikingly, histones are substantially retained in epididymal sperm from either DOT1L- or MLLT10-deficient mice. These results demonstrate that H3K79 methylation promotes histone replacement during spermiogenesis.
Collapse
Affiliation(s)
- Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Histoembryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Aniruddha J. Deshpande
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Histoembryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
25
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
26
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
27
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
28
|
Nilius-Eliliwi V, Tembrink M, Gerding WM, Lubieniecki KP, Lubieniecka JM, Kankel S, Liehr T, Mika T, Dimopoulos F, Döhner K, Schroers R, Nguyen HHP, Vangala DB. Broad genomic workup including optical genome mapping uncovers a DDX3X: MLLT10 gene fusion in acute myeloid leukemia. Front Oncol 2022; 12:959243. [PMID: 36158701 PMCID: PMC9501710 DOI: 10.3389/fonc.2022.959243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
In acute myeloid leukemia (AML), treatment decisions are currently made according to the risk classification of the European LeukemiaNet (ELN), which is based on genetic alterations. Recently, optical genome mapping (OGM) as a novel method proved to yield a genome-wide and detailed cytogenetic characterization at the time of diagnosis. A young female patient suffered from a rather unexpected aggressive disease course under FLT3 targeted therapy in combination with induction chemotherapy. By applying a “next-generation diagnostic workup“ strategy with OGM and whole-exome sequencing (WES), a DDX3X: MLLT10 gene fusion could be detected, otherwise missed by routine diagnostics. Furthermore, several aspects of lineage ambiguity not shown by standard diagnostics were unraveled such as deletions of SUZ12 and ARPP21, as well as T-cell receptor recombination. In summary, the detection of this particular gene fusion DDX3X: MLLT10 in a female AML patient and the findings of lineage ambiguity are potential explanations for the aggressive course of disease. Our study demonstrates that OGM can yield novel clinically significant results, including additional information helpful in disease monitoring and disease biology.
Collapse
Affiliation(s)
- Verena Nilius-Eliliwi
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Mika
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Fotios Dimopoulos
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | - Deepak Ben Vangala
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Deepak Ben Vangala,
| |
Collapse
|
29
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
30
|
Griffioen MS, de Leeuw DC, Janssen JJWM, Smit L. Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers (Basel) 2022; 14:cancers14143456. [PMID: 35884517 PMCID: PMC9318140 DOI: 10.3390/cancers14143456] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Venetoclax has proven to be a promising therapy for newly diagnosed, relapsed and refractory AML patients ineligible for induction chemotherapy. Current ongoing clinical trials are evaluating its effectivity as frontline therapy for all acute myeloid leukemia (AML) patients. However, response rates vary wildly, depending on patient characteristics and mutational profiles. This review elaborates on the efficacy and safety of venetoclax compared to conventional chemotherapy for treatment of AML patients, comparing the response rates, overall survival and adverse events. Moreover, it gives an overview of genetic and epigenetic AML cell characteristics that give enhanced or decreased response to venetoclax and offers insights into the pathogenesis of venetoclax sensitivity and resistance. Additionally, it suggests possible treatment combinations predicted to be successful based on identified mechanisms influencing venetoclax sensitivity of AML cells. Abstract Venetoclax is a BCL-2 inhibitor that effectively improves clinical outcomes in newly diagnosed, relapsed and refractory acute myeloid leukemia (AML) patients, with complete response rates (with and without complete blood count recovery) ranging between 34–90% and 21–33%, respectively. Here, we aim to give an overview of the efficacy of venetoclax-based therapy for AML patients, as compared to standard chemotherapy, and on factors and mechanisms involved in venetoclax sensitivity and resistance in AML (stem) cells, with the aim to obtain a perspective of response biomarkers and combination therapies that could enhance the sensitivity of AML cells to venetoclax. The presence of molecular aberrancies can predict responses to venetoclax, with a higher response in NPM1-, IDH1/2-, TET2- and relapsed or refractory RUNX1-mutated AML. Decreased sensitivity to venetoclax was observed in patients harboring FLT3-ITD, TP53, K/NRAS or PTPN11 mutations. Moreover, resistance to venetoclax was observed in AML with a monocytic phenotype and patients pre-treated with hypomethylating agents. Resistance to venetoclax can arise due to mutations in BCL-2 or pro-apoptotic proteins, an increased dependency on MCL-1, and usage of additional/alternative sources for energy metabolism, such as glycolysis and fatty acid metabolism. Clinical studies are testing combination therapies that may circumvent resistance, including venetoclax combined with FLT3- and MCL-1 inhibitors, to enhance venetoclax-induced cell death. Other treatments that can potentially synergize with venetoclax, including MEK1/2 and mitochondrial complex inhibitors, need to be evaluated in a clinical setting.
Collapse
Affiliation(s)
- Mila S Griffioen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C de Leeuw
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Wille CK, Sridharan R. Connecting the DOTs on Cell Identity. Front Cell Dev Biol 2022; 10:906713. [PMID: 35733849 PMCID: PMC9207516 DOI: 10.3389/fcell.2022.906713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
DOT1-Like (DOT1L) is the sole methyltransferase of histone H3K79, a modification enriched mainly on the bodies of actively transcribing genes. DOT1L has been extensively studied in leukemia were some of the most frequent onco-fusion proteins contain portions of DOT1L associated factors that mislocalize H3K79 methylation and drive oncogenesis. However, the role of DOT1L in non-transformed, developmental contexts is less clear. Here we assess the known functional roles of DOT1L both in vitro cell culture and in vivo models of mammalian development. DOT1L is evicted during the 2-cell stage when cells are totipotent and massive epigenetic and transcriptional alterations occur. Embryonic stem cell lines that are derived from the blastocyst tolerate the loss of DOT1L, while the reduction of DOT1L protein levels or its catalytic activity greatly enhances somatic cell reprogramming to induced pluripotent stem cells. DOT1L knockout mice are embryonically lethal when organogenesis commences. We catalog the rapidly increasing studies of total and lineage specific knockout model systems that show that DOT1L is broadly required for differentiation. Reduced DOT1L activity is concomitant with increased developmental potential. Contrary to what would be expected of a modification that is associated with active transcription, loss of DOT1L activity results in more upregulated than downregulated genes. DOT1L also participates in various epigenetic networks that are both cell type and developmental stage specific. Taken together, the functions of DOT1L during development are pleiotropic and involve gene regulation at the locus specific and global levels.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| |
Collapse
|
32
|
Lin H, Cheng K, Kubota H, Lan Y, Riedel SS, Kakiuchi K, Sasaki K, Bernt KM, Bartolomei MS, Luo M, Wang PJ. Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes Dev 2022; 36:752-763. [PMID: 35738678 PMCID: PMC9296001 DOI: 10.1101/gad.349550.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022]
Abstract
Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China;,Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone S. Riedel
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Kazue Kakiuchi
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Arnold O, Barbosa K, Deshpande AJ, Zhu N. The Role of DOT1L in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:917125. [PMID: 35712672 PMCID: PMC9197164 DOI: 10.3389/fcell.2022.917125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Disruptor of telomeric silencing 1 (DOT1) was first identified in yeast (DOT1p) and is the sole methyltransferase responsible for histone three lysine 79 (H3K79) mono-, di-, and tri-methylation. Mammalian DOT1 (DOT1-like protein or DOT1L) has been implicated in many cellular processes, such as cell cycle progression, DNA damage response, and development. A notable developmental process reliant on DOT1L function is normal hematopoiesis, as DOT1L knockout leads to impairment in blood lineage formation. Aberrant activity of DOT1L has been implicated in hematopoietic malignancies as well, especially those with high expression of the homeobox (HOX) genes, as genetic or pharmacological DOT1L inhibition causes defects in leukemic transformation and maintenance. Recent studies have uncovered methyltransferase-independent functions and a novel mechanism of DOT1L function. Here, we summarize the roles of DOT1L in normal and malignant hematopoiesis and the potential mechanism behind DOT1L function in hematopoiesis, in light of recent discoveries.
Collapse
Affiliation(s)
- Olivia Arnold
- Blood Research Institute, Versiti, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Nan Zhu
- Blood Research Institute, Versiti, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Nan Zhu,
| |
Collapse
|
34
|
Yuan Y, Du L, Tan R, Yu Y, Jiang J, Yao A, Luo J, Tang R, Xiao Y, Sun H. Design, Synthesis, and Biological Evaluations of DOT1L Peptide Mimetics Targeting the Protein-Protein Interactions between DOT1L and MLL-AF9/MLL-ENL. J Med Chem 2022; 65:7770-7785. [PMID: 35612819 DOI: 10.1021/acs.jmedchem.2c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of a previously identified DOT1L peptide mimetic (compound 3), a series of novel peptide mimetics were designed and synthesized. These compounds can potently bind to AF9 and ENL either in cell-free binding assays or in leukemia cells, and selectively inhibit the growth of leukemia cells containing mixed lineage leukemia (MLL) fusion proteins. The most potent compound 12 exhibited comparable anticancer cellular activities to those of EPZ5676, a clinical stage enzymatic inhibitor of DOT1L in several leukemia cell lines containing MLL fusion proteins. Mechanism studies for compound 12 indicated that it did not affect the global methylation of H3K79 catalyzed by DOT1L but could effectively suppress the methylation of H3K79 at MLL fusion proteins targeted genes and inhibit the expressions of these genes. Our studies thus demonstrated that inhibiting the protein-protein interactions between DOT1L and MLL fusion proteins is a potentially effective strategy for the treatment of MLL rearranged leukemias.
Collapse
Affiliation(s)
- Yinan Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rongliang Tan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Aihong Yao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiajun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Tang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Yi Y, Ge S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol 2022; 15:35. [PMID: 35331314 PMCID: PMC8944089 DOI: 10.1186/s13045-022-01251-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
Disrupting the methylation of telomeric silencing 1-like (DOT1L)-mediated histone H3 lysine 79 has been implicated in MLL fusion-mediated leukemogenesis. Recently, DOT1L has become an attractive therapeutic target for MLL-rearranged leukemias. Rigorous studies have been performed, and much progress has been achieved. Moreover, one DOT1L inhibitor, EPZ-5676, has entered clinical trials, but its clinical activity is modest. Here, we review the recent advances and future trends of various therapeutic strategies against DOT1L for MLL-rearranged leukemias, including DOT1L enzymatic activity inhibitors, DOT1L degraders, protein-protein interaction (PPI) inhibitors, and combinatorial interventions. In addition, the limitations, challenges, and prospects of these therapeutic strategies are discussed. In summary, we present a general overview of DOT1L as a target in MLL-rearranged leukemias to provide valuable guidance for DOT1L-associated drug development in the future. Although a variety of DOT1L enzymatic inhibitors have been identified, most of them require further optimization. Recent advances in the development of small molecule degraders, including heterobifunctional degraders and molecular glues, provide valuable insights and references for DOT1L degraders. However, drug R&D strategies and platforms need to be developed and preclinical experiments need to be performed with the purpose of blocking DOT1L-associated PPIs. DOT1L epigenetic-based combination therapy is worth considering and exploring, but the therapy should be based on a thorough understanding of the regulatory mechanism of DOT1L epigenetic modifications.
Collapse
Affiliation(s)
- Yan Yi
- Departments of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shenglei Ge
- Departments of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Street, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Fertal SA, Zaidi SK, Stein JL, Stein GS, Heath JL. CXCR4 Mediates Enhanced Cell Migration in CALM-AF10 Leukemia. Front Oncol 2022; 11:708915. [PMID: 35070954 PMCID: PMC8767107 DOI: 10.3389/fonc.2021.708915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Leukemia transformed by the CALM-AF10 chromosomal translocation is characterized by a high incidence of extramedullary disease, central nervous system (CNS) relapse, and a poor prognosis. Invasion of the extramedullary compartment and CNS requires leukemia cell migration out of the marrow and adherence to the cells of the local tissue. Cell adhesion and migration are increasingly recognized as contributors to leukemia development and therapeutic response. These processes are mediated by a variety of cytokines, chemokines, and their receptors, forming networks of both secreted and cell surface factors. The cytokines and cytokine receptors that play key roles in CALM-AF10 driven leukemia are unknown. We find high cell surface expression of the cytokine receptor CXCR4 on leukemia cells expressing the CALM-AF10 oncogenic protein, contributing to the migratory nature of this leukemia. Our discovery of altered cytokine receptor expression and function provides valuable insight into the propagation and persistence of CALM-AF10 driven leukemia.
Collapse
Affiliation(s)
- Shelby A Fertal
- Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sayyed K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| | - Jessica L Heath
- Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,University of Vermont Cancer Center, Burlington, VT, United States
| |
Collapse
|
37
|
Wille CK, Sridharan R. DOT1L inhibition enhances pluripotency beyond acquisition of epithelial identity and without immediate suppression of the somatic transcriptome. Stem Cell Reports 2021; 17:384-396. [PMID: 34995500 PMCID: PMC8828533 DOI: 10.1016/j.stemcr.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibiting the histone 3 lysine 79 (H3K79) methyltransferase, disruptor of telomeric silencing 1-like (DOT1L), increases the efficiency of reprogramming somatic cells to induced pluripotent stem cells (iPSCs). Here, we find that, despite the enrichment of H3K79 methylation on thousands of actively transcribed genes in somatic cells, DOT1L inhibition (DOT1Li) does not immediately cause the shutdown of the somatic transcriptional profile to enable transition to pluripotency. Contrary to the prevalent view, DOT1Li promotes iPSC generation beyond the mesenchymal to epithelial transition and even from already epithelial cell types. DOT1Li is most potent at the midpoint of reprogramming in part by repressing Nfix that persists at late stages of reprogramming. Importantly, regulation of single genes cannot substitute for DOT1Li, demonstrating that H3K79 methylation has pleiotropic effects in maintaining cell identity. DOT1L is a barrier of reprogramming, especially at the mid-point DOT1L inhibition increases pluripotency beyond MET DOT1L inhibition does not immediately suppress somatic expression Single factors cannot replace the pleiotropic effects of DOT1L inhibition
Collapse
Affiliation(s)
- Coral K Wille
- Wisconsin Institute for Discovery, University of Wisconsin, 330 North Orchard Street, Room 2118, Madison, WI 53715, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin, 330 North Orchard Street, Room 2118, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
38
|
Malouf C, Antunes ETB, O'Dwyer M, Jakobczyk H, Sahm F, Landua SL, Anderson RA, Soufi A, Halsey C, Ottersbach K. miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood 2021; 138:2066-2092. [PMID: 34111240 DOI: 10.1182/blood.2020006610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard A Anderson
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
39
|
Tip60 activates Hoxa9 and Meis1 expression through acetylation of H2A.Z, promoting MLL-AF10 and MLL-ENL acute myeloid leukemia. Leukemia 2021; 35:2840-2853. [PMID: 33967269 DOI: 10.1038/s41375-021-01244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated. In this study, we discovered that Tip60, a MYST-type histone acetyltransferase, was required for the expression of HoxA cluster and Meis1 genes and the development of MLL-fusion leukemia. Tip60 was recruited by MLL-AF10 and MLL-ENL fusions to the Hoxa9 locus, where it acetylated H2A.Z, thereby promoting Hoxa9 gene expression. Conditional deletion of Tip60 prevented the development of MLL-AF10 and MLL-ENL leukemia, indicating that Tip60 is indispensable for the leukemogenic activity of the MLL-AF10 and MLL-ENL-fusions. Our findings provide novel insight about epigenetic regulation in the development of MLL-AF10 and MLL-ENL-fusion leukemia.
Collapse
|
40
|
Sasca D, Guezguez B, Kühn MWM. Next generation epigenetic modulators to target myeloid neoplasms. Curr Opin Hematol 2021; 28:356-363. [PMID: 34267079 DOI: 10.1097/moh.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Comprehensive sequencing studies aimed at determining the genetic landscape of myeloid neoplasms have identified epigenetic regulators to be among the most commonly mutated genes. Detailed studies have also revealed a number of epigenetic vulnerabilities. The purpose of this review is to outline these vulnerabilities and to discuss the new generation of drugs that exploit them. RECENT FINDINGS In addition to deoxyribonucleic acid-methylation, novel epigenetic dependencies have recently been discovered in various myeloid neoplasms and many of them can be targeted pharmacologically. These include not only chromatin writers, readers, and erasers but also chromatin movers that shift nucleosomes to allow access for transcription. Inhibitors of protein-protein interactions represent a novel promising class of drugs that allow disassembly of oncogenic multiprotein complexes. SUMMARY An improved understanding of disease-specific epigenetic vulnerabilities has led to the development of second-generation mechanism-based epigenetic drugs against myeloid neoplasms. Many of these drugs have been introduced into clinical trials and synergistic drug combination regimens have been shown to enhance efficacy and potentially prevent drug resistance.
Collapse
Affiliation(s)
- Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| | - Borhane Guezguez
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
- German Cancer Research Center (DKFZ), Heidelberg
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Michael W M Kühn
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| |
Collapse
|
41
|
Gavory G, Baril C, Laberge G, Bidla G, Koonpaew S, Sonea T, Sauvageau G, Therrien M. A genetic screen in Drosophila uncovers the multifaceted properties of the NUP98-HOXA9 oncogene. PLoS Genet 2021; 17:e1009730. [PMID: 34383740 PMCID: PMC8384169 DOI: 10.1371/journal.pgen.1009730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/24/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) underlies the uncontrolled accumulation of immature myeloid blasts. Several cytogenetic abnormalities have been associated with AML. Among these is the NUP98-HOXA9 (NA9) translocation that fuses the Phe-Gly repeats of nucleoporin NUP98 to the homeodomain of the transcription factor HOXA9. The mechanisms enabling NA9-induced leukemia are poorly understood. Here, we conducted a genetic screen in Drosophila for modifiers of NA9. The screen uncovered 29 complementation groups, including genes with mammalian homologs known to impinge on NA9 activity. Markedly, the modifiers encompassed a diversity of functional categories, suggesting that NA9 perturbs multiple intracellular events. Unexpectedly, we discovered that NA9 promotes cell fate transdetermination and that this phenomenon is greatly influenced by NA9 modifiers involved in epigenetic regulation. Together, our work reveals a network of genes functionally connected to NA9 that not only provides insights into its mechanism of action, but also represents potential therapeutic targets. Acute myeloid leukemia or AML is a cancer of blood cells. Despite significant progress in recent years, a majority of afflicted individuals still succumbs to the disease. A variety of genetic defects have been associated to AML. Among these are chromosomal translocations, which entail the fusion of two genes, leading to the production of cancer-inducing chimeric proteins. A representative example is the NUP98-HOXA9 oncoprotein, which results from the fusion of the NUP98 and HOXA9 genes. The mechanism of action of NUP98-HOXA9 remains poorly understood. Given the evolutionarily conservation of NUP98 and HOXA9 as well as basic cellular processes across multicellular organisms, we took advantage of Drosophila fruit flies as a genetic tool to identify genes that impinge on the activity of human NUP98-HOXA9. Surprisingly, this approach identified a relatively large spectrum of conserved genes that engaged in functional interplay with NUP98-HOXA9, which indicated the pervasive effects that this oncogene has on basic cellular events. While some genes have been previously linked to NUP98-HOXA9, thus validating our experimental approach, several others are novel and as such represent potentially new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gino Laberge
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Surapong Koonpaew
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thomas Sonea
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de médecine, Université de Montréal, Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
42
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
43
|
Klein BJ, Deshpande A, Cox KL, Xuan F, Zandian M, Barbosa K, Khanal S, Tong Q, Zhang Y, Zhang P, Sinha A, Bohlander SK, Shi X, Wen H, Poirier MG, Deshpande AJ, Kutateladze TG. The role of the PZP domain of AF10 in acute leukemia driven by AF10 translocations. Nat Commun 2021; 12:4130. [PMID: 34226546 PMCID: PMC8257627 DOI: 10.1038/s41467-021-24418-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Chromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, USA
| | - Fan Xuan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sujita Khanal
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pan Zhang
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
44
|
Uğurlu-Çimen D, Odluyurt D, Sevinç K, Özkan-Küçük NE, Özçimen B, Demirtaş D, Enüstün E, Aztekin C, Philpott M, Oppermann U, Özlü N, Önder TT. AF10 (MLLT10) prevents somatic cell reprogramming through regulation of DOT1L-mediated H3K79 methylation. Epigenetics Chromatin 2021; 14:32. [PMID: 34215314 PMCID: PMC8254283 DOI: 10.1186/s13072-021-00406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The histone H3 lysine 79 (H3K79) methyltransferase DOT1L is a key chromatin-based barrier to somatic cell reprogramming. However, the mechanisms by which DOT1L safeguards cell identity and somatic-specific transcriptional programs remain unknown. Results We employed a proteomic approach using proximity-based labeling to identify DOT1L-interacting proteins and investigated their effects on reprogramming. Among DOT1L interactors, suppression of AF10 (MLLT10) via RNA interference or CRISPR/Cas9, significantly increases reprogramming efficiency. In somatic cells and induced pluripotent stem cells (iPSCs) higher order H3K79 methylation is dependent on AF10 expression. In AF10 knock-out cells, re-expression wild-type AF10, but not a DOT1L binding-impaired mutant, rescues overall H3K79 methylation and reduces reprogramming efficiency. Transcriptomic analyses during reprogramming show that AF10 suppression results in downregulation of fibroblast-specific genes and accelerates the activation of pluripotency-associated genes. Conclusions Our findings establish AF10 as a novel barrier to reprogramming by regulating H3K79 methylation and thereby sheds light on the mechanism by which cell identity is maintained in somatic cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00406-7.
Collapse
Affiliation(s)
| | - Deniz Odluyurt
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | - Kenan Sevinç
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | | | - Burcu Özçimen
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | - Deniz Demirtaş
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | - Eray Enüstün
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | - Can Aztekin
- School of Medicine, Koc University, Istanbul, 34450, Turkey
| | | | - Udo Oppermann
- Botnar Research Centre, University of Oxford, Oxford, UK.,Centre for Medicine Discovery, University of Oxford, Oxford, UK
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koc University, Istanbul, 34450, Turkey
| | - Tamer T Önder
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|
45
|
Cutler JA, Perner F, Armstrong SA. Histone PTM Crosstalk Stimulates Dot1 Methyltransferase Activity. Trends Biochem Sci 2021; 46:522-524. [PMID: 33879367 DOI: 10.1016/j.tibs.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Valencia-Sánchez et al. have demonstrated that two histone post-translational modifications (PTMs) - H4K16 acetylation (H4K16ac) and H2BK120 ubiquitination (H2Bub) - enhance the methylation of H3K79 (H3K79me) by Dot1. This breakthrough indicates crosstalk between H4Kac/H2Bub/H3K79me and may improve our understanding of the role that Dot1/Dot1L plays in developmental processes and disease, including MLL1/KMT2A(MLL-r) leukemia.
Collapse
Affiliation(s)
- Jevon A Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Internal Medicine C, Greifswald University Medical Center, Greifswald 17475, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
46
|
High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nat Commun 2021; 12:4063. [PMID: 34210975 PMCID: PMC8249386 DOI: 10.1038/s41467-021-24324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of novel functional domains and characterization of detailed regulatory mechanisms in cancer-driving genes is critical for advanced cancer therapy. To date, CRISPR gene editing has primarily been applied to defining the role of individual genes. Recently, high-density mutagenesis via CRISPR tiling of gene-coding exons has been demonstrated to identify functional regions in genes. Furthermore, breakthroughs in combining CRISPR library screens with single-cell droplet RNA sequencing (sc-RNAseq) platforms have revealed the capacity to monitor gene expression changes upon genetic perturbations at single-cell resolution. Here, we present “sc-Tiling,” which integrates a CRISPR gene-tiling screen with single-cell transcriptomic and protein structural analyses. Distinct from other reported single-cell CRISPR screens focused on observing gene function and gene-to-gene/enhancer-to-gene regulation, sc-Tiling enables the capacity to identify regulatory mechanisms within a gene-coding region that dictate gene activity and therapeutic response. Identifying functional domains and genetic regulatory mechanisms is essential for developing new therapies. Here the authors present sc-Tiling, single-cell high-density CRISPR tiling screening for functional domain characterization.
Collapse
|
47
|
DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proc Natl Acad Sci U S A 2021; 118:2106148118. [PMID: 34187895 DOI: 10.1073/pnas.2106148118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.
Collapse
|
48
|
Specific patterns of H3K79 methylation influence genetic interaction of oncogenes in AML. Blood Adv 2021; 4:3109-3122. [PMID: 32634241 DOI: 10.1182/bloodadvances.2020001922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding mechanisms of cooperation between oncogenes is critical for the development of novel therapies and rational combinations. Acute myeloid leukemia (AML) cells with KMT2A-fusions and KMT2A partial tandem duplications (KMT2APTD) are known to depend on the histone methyltransferase DOT1L, which methylates histone 3 lysine 79 (H3K79). About 30% of KMT2APTD AMLs carry mutations in IDH1/2 (mIDH1/2). Previous studies showed that 2-hydroxyglutarate produced by mIDH1/2 increases H3K79 methylation, and mIDH1/2 patient samples are sensitive to DOT1L inhibition. Together, these findings suggested that stabilization or increases in H3K79 methylation associated with IDH mutations support the proliferation of leukemias dependent on this mark. However, we found that mIDH1/2 and KMT2A alterations failed to cooperate in an experimental model. Instead, mIDH1/2 and 2-hydroxyglutarate exert toxic effects, specifically on KMT2A-rearranged AML cells (fusions/partial tandem duplications). Mechanistically, we uncover an epigenetic barrier to efficient cooperation; mIDH1/2 expression is associated with high global histone 3 lysine 79 dimethylation (H3K79me2) levels, whereas global H3K79me2 is obligate low in KMT2A-rearranged AML. Increasing H3K79me2 levels, specifically in KMT2A-rearrangement leukemias, resulted in transcriptional downregulation of KMT2A target genes and impaired leukemia cell growth. Our study details a complex genetic and epigenetic interaction of 2 classes of oncogenes, IDH1/2 mutations and KMT2A rearrangements, that is unexpected based on the high percentage of IDH mutations in KMT2APTD AML. KMT2A rearrangements are associated with a trend toward lower response rates to mIDH1/2 inhibitors. The substantial adaptation that has to occur for 2 initially counteracting mutations to be tolerated within the same leukemic cell may provide at least a partial explanation for this observation.
Collapse
|
49
|
Zhou Z, Kang S, Huang Z, Zhou Z, Chen S. Structural characteristics of coiled-coil regions in AF10-DOT1L and AF10-inhibitory peptide complex. J Leukoc Biol 2021; 110:1091-1099. [PMID: 33993518 DOI: 10.1002/jlb.1ma0421-010r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/09/2022] Open
Abstract
The interaction of the solo H3K79 methyltransferase DOT1-like (DOT1L) and its regulatory factor ALL1-fused gene from chromosome 10 protein (AF10) is crucial for the transcription of developmental genes such as HOXA in acute leukemia. The octapeptide motif and leucine zipper region of AF10 is responsible for binding DOT1L and catalyzing H3K79 monomethylation to demethylation. However, the characteristics of the mechanism between DOT1L and AF10 are not clear. Here, we present the crystal structures of coiled-coil regions of DOT1L-AF10 and AF10-inhibitory peptide, demonstrating the inhibitory peptide could form a compact complex with AF10 via a different recognition pattern. Furthermore, an inhibitory peptide with structure-based optimization is identified and decreases the HOXA gene expression in a human cell line. Our studies provide an innovative pharmacologic basis for therapeutic intervention in leukemia.
Collapse
Affiliation(s)
- Zhechong Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sisi Kang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhaoxia Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ziliang Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
50
|
Thioridazine requires calcium influx to induce MLL-AF6-rearranged AML cell death. Blood Adv 2021; 4:4417-4429. [PMID: 32931582 DOI: 10.1182/bloodadvances.2020002001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023] Open
Abstract
In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases, with severe late effects and a still high risk of disease recurrence as the main drawbacks. The identification of targeted, more effective, safer drugs is thus desirable. We performed a high-throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ), a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement, which mediates a dramatically poor (below 20%) survival rate. TDZ induced cell death and irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we explored its mechanism of action and found a profound cytoskeletal remodeling of blast cells that led to Ca2+ influx, triggering apoptosis through mitochondrial depolarization, confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug's safety by developing novel TDZ analogues that exerted the same effect on leukemia reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be corroborated in further clinical trials.
Collapse
|