1
|
Meng L, Zhang Y, Wu P, Li D, Lu Y, Shen P, Yang T, Shi G, Chen Q, Yuan H, Ge W, Miao Y, Tu M, Jiang K. CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2. Mol Cancer 2022; 21:121. [PMID: 35650603 PMCID: PMC9158112 DOI: 10.1186/s12943-022-01599-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND circular RNAs (circRNAs) have been reported to play crucial roles in the biology of different cancers. However, little is known about the function of circSTX6 (hsa_circ_0007905) in pancreatic ductal adenocarcinoma (PDAC). METHODS circSTX6, a circRNA containing exons 4, 5, 6 and 7 of the STX6 gene, was identified by RNA sequencing and detected by quantitative reverse transcription PCR (qRT-PCR). The biological function of circSTX6 was assessed in vitro and in vivo. The relationship between circSTX6 and miR-449b-5p was confirmed by biotin-coupled circRNA capture, fluorescence in situ hybridization (FISH) and luciferase reporter assays. The interaction of circSTX6 with Cullin 2 (CUL2) was verified by RNA-protein RNA pull-down, RNA immunoprecipitation (RIP) and western blotting assays. RESULTS circSTX6 was frequently upregulated in PDAC tissues, and circSTX6 overexpression promoted tumor proliferation and metastasis both in vitro and in vivo. Furthermore, circSTX6 expression was associated with tumor differentiation and N stage. Mechanistically, circSTX6 regulated the expression of non-muscle myosin heavy chain 9 (MYH9) by sponging miR-449b-5p. Moreover, circSTX6 was confirmed to participate in the ubiquitin-dependent degradation of hypoxia-inducible factor 1-alpha (HIF1A) by interacting with CUL2 and subsequently accelerating the transcription of MYH9. CONCLUSIONS Our findings indicate that circSTX6 facilitates proliferation and metastasis of PDAC cells by regulating the expression of MYH9 through the circSTX6/miR-449b-5p axis and circSTX6/CUL2/HIF1A signaling pathway. Therefore, circSTX6 could serve as a potential therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Lingdong Meng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yihan Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yichao Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Taoyue Yang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Wanli Ge
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Min Tu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Prognostic prediction of a 12-methylation gene-based risk score system on pancreatic adenocarcinoma. Oncol Lett 2020; 20:85-98. [PMID: 32565937 PMCID: PMC7285752 DOI: 10.3892/ol.2020.11575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) accounts for ~85% of all pancreatic cancer cases and is associated with a less favorable prognosis. Aberrant DNA methylation may influence the progression of PAAD by inducing abnormal gene expression. Methylation data of PAAD samples with prognosis information were obtained from The Cancer Genome Atlas (training set) and European Bioinformatics Institute Array Express databases (validation sets). Using the limma package, the differentially methylated genes in the training dataset were screened. Combined with the Weighted Gene Co-expression Network Analysis package, the co-methylated genes in key modules were identified. Then, a cor.test function in R software was applied to explore the functions of key the methylated genes. Correlation analyses of the expression levels and methylation levels of key methylated genes were performed, followed by identification of methylated genes associated with prognosis using Univariate Cox regression analysis. The optimal combination of prognosis related methylated genes was determined using a Cox-Proportional Hazards (Cox-PH) model. Subsequently, the risk score prognostic prediction system was constructed by combining the Cox-PH prognosis coefficients of the selected optimized genes. Based on the constructed risk score system, samples in all datasets were divided into high and low risk samples and the survival status was compared using survival curves. Furthermore, the correlation between independent prognostic factors and the risk score system was determined using the survival package. A total of 50 genes associated with prognosis of PAAD and a 12-gene optimal combination were obtained, including: CCAAT/enhancer binding protein α, histone cluster 1 H4E, STAM binding protein-like 1, phospholipase D3, centrosomal protein 55, ssDNA binding protein 4, glutamate AMPA receptor subunit 1, switch-associated protein 70, adenylate-cyclase activating polypeptide 1 receptor 1, yippee-like 3, homeobox C4 and insulin-like growth factor binding protein 1. Subsequently, a risk score prognostic prediction system of these 12 genes was constructed and validated. In addition, pathological N category, radiotherapy and risk status were identified as independent prognostic factors. Overall, the risk score prognostic prediction system constructed in the present study may be effective for predicting the prognosis of patients with PAAD.
Collapse
|
3
|
Colloca GA, Venturino A, Guarneri D. Neutrophil count kinetics during the first cycle of chemotherapy predicts the outcome of patients with locally advanced or metastatic pancreatic cancer. Asia Pac J Clin Oncol 2020; 16:247-253. [PMID: 32129930 DOI: 10.1111/ajco.13325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neutrophil count reduction after chemotherapy has been related with longer survival of patients with metastatic pancreatic adenocarcinoma, but there is not a standardized measurement for this phenomenon. METHODS Some parameters related to the change in neutrophil count between the first and the second cycle of chemotherapy or between the baseline count and the nadir have been evaluated among patients with advanced pancreatic cancer at a single institution. A Cox regression model was built which included, in addition to the common prognostic variables, some variables related to the change of the neutrophil count after chemotherapy. RESULTS One hundred patients were selected. Two neutrophil kinetics related variables predicted overall survival independently, such as the neutrophil count growth rate (hazard ratio [HR] = 1.245; confidence intervals [CIs], 1.077-1.440) and the chemotherapy-induced neutropenia after one cycle (HR = 0.499; CIs, 0.269-0.927). CONCLUSION The kinetics of neutrophil count after chemotherapy is an early and independent prognostic factor, which appears to be simple to measure at the start of the second cycle of chemotherapy by means of the neutrophil count growth rate.
Collapse
|
4
|
Xie KF, Guo DD, Luo XJ. SMDT1-driven change in mitochondrial dynamics mediate cell apoptosis in PDAC. Biochem Biophys Res Commun 2019; 511:323-329. [DOI: 10.1016/j.bbrc.2019.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
|
5
|
Cao XY, Zhang XX, Yang MW, Hu LP, Jiang SH, Tian GA, Zhu LL, Li Q, Sun YW, Zhang ZG. Aberrant upregulation of KLK10 promotes metastasis via enhancement of EMT and FAK/SRC/ERK axis in PDAC. Biochem Biophys Res Commun 2018; 499:584-593. [PMID: 29621546 DOI: 10.1016/j.bbrc.2018.03.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Heng Jiang
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Guang-Ang Tian
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Li-Li Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qing Li
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China.
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Che JX, Wang ZL, Dong XW, Hu YH, Xie X, Hu YZ. Bicyclo[2.2.1]heptane containing N, N'-diarylsquaramide CXCR2 selective antagonists as anti-cancer metastasis agents. RSC Adv 2018; 8:11061-11069. [PMID: 35541503 PMCID: PMC9078949 DOI: 10.1039/c8ra01806e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 11/21/2022] Open
Abstract
CXCR1 and CXCR2 are CXC chemokine receptors (CXCRs), corresponding to cytokines of the CXC chemokine family. CXCR2 was found to be 77% homologous to CXCR1. Antagonism of the chemokine receptor CXCR2 has been proposed as a new strategy for the treatment of metastatic cancer. In order to find a CXCR2 selective antagonist, a bicyclo[2.2.1]heptane containing N,N'-diarylsquaramide (compound 2e) was identified by introducing a bridge ring system into the N,N'-diarylsquaramide skeleton, and it exhibited good CXCR2 antagonistic activity (CXCR2IC50 = 48 nM) and good selectivity (CXCR1IC50/CXCR2IC50 = 60.4). Furthermore, an in vitro biological assay of compound 2e also demonstrated its good anti-cancer metastatic effect against the pancreatic cancer cell line CFPAC1. In addition, compound 2e showed an extremely high stability in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF), as well as in rat and human plasma, but not in rat and human liver microsomes. In vivo pharmacokinetic studies in rats indicated that 2e has an excellent PK profile (10 mg kg-1 po, C max = 2863 ng mL-1, t 1/2 = 2.58 h). Moreover, molecular docking was further implemented to propose the preponderant configuration of compound 2e, providing important and useful guidelines for further development.
Collapse
Affiliation(s)
- Jin-Xin Che
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University Hangzhou PR China
| | - Zhi-Long Wang
- State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai PR China
| | - Xiao-Wu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University Hangzhou PR China
| | - You-Hong Hu
- State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai PR China
| | - Xin Xie
- State Key Laborarory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai PR China
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai PR China
| | - Yong-Zhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University Hangzhou PR China
| |
Collapse
|
7
|
Shi C, Wang Y, Guo Y, Chen Y, Liu N. Cooperative down-regulation of ribosomal protein L10 and NF-κB signaling pathway is responsible for the anti-proliferative effects by DMAPT in pancreatic cancer cells. Oncotarget 2018; 8:35009-35018. [PMID: 28388532 PMCID: PMC5471030 DOI: 10.18632/oncotarget.16557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 01/05/2023] Open
Abstract
Dimethylaminoparthenolide (DMAPT), a water-soluble analogue of natural product parthenolide, possesses anti-inflammatory and anti-tumor activities. Despite that the anti-inflammatory mechanism of DMAPT has been well studied, specific target(s) for DMPAT and its anti-tumor mechanism remain poorly understood. In this study, to assess the anti-proliferative effects of DMAPT in pancreatic cancer cell lines and exploit its anti-tumor mechanism, serial affinity chromatograph was implemented to probe potential targets for DMAPT, revealing that ribosomal protein L10 (RPL10) is a specific binding protein of DMAPT in PANC-1 cells. DMAPT could decrease the expression of RPL10 accompanying its anti-proliferative effects. Mechanistically, in both PANC-1 cells and MiaPaca-2 cells, reduced expression of RPL10 triggered by DMAPT binding decreased the expression of either p65 or IKKγ through the direct binding between RPL10 and p65 or IKKγ. Together, the present study strongly implies that RPL10 is a novel target with therapeutic potential for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chen Shi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | - Yuna Guo
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| |
Collapse
|
8
|
雷 亮, 杨 延, 刘 江, 刘 德. 神经营养因子和趋化因子与胰腺癌神经浸润的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1265-1271. [DOI: 10.11569/wcjd.v25.i14.1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
胰腺癌癌细胞浸润神经组织, 沿神经或进入神经束膜内沿束膜间隙浸润生长, 即发生神经浸润(perineural invasion, PNI). PNI是特殊的肿瘤转移通路, 在胰腺癌中的发生率极高, 为胰腺癌的重要生物学特性之一, 被认为是导致胰腺癌手术后高复发率和胰腺癌相关疼痛的最主要原因之一, 与患者不良预后和低存活率密切相关. PNI发生的机制十分复杂, 涉及多种生物分子和信号途径. 神经营养因子和趋化因子参与相关信号通路, 促进癌细胞神经交互作用, 导致胰腺癌PNI发生, 在胰腺癌PNI中扮演重要角色. 本文将神经营养因子家族和趋化因子与胰腺癌PNI的研究进展作一综述.
Collapse
|
9
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|