1
|
Wang M, Li B, Liu Y, Zhang M, Huang C, Cai T, Jia Y, Huang X, Ke H, Liu S, Yang S. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14:1107507. [PMID: 36814500 PMCID: PMC9939528 DOI: 10.3389/fphar.2023.1107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Sleep disorders are common clinical psychosomatic disorders that can co-exist with a variety of conditions. In humans and animal models, sleep deprivation (SD) is closely related with gastrointestinal diseases. Shu-Xie Decoction (SX) is a traditional Chinese medicine (TCM) with anti-nociceptive, anti-inflammatory, and antidepressant properties. SX is effective in the clinic for treating patients with abnormal sleep and/or gastrointestinal disorders, but the underlying mechanisms are not known. This study investigated the mechanisms by which SX alleviates SD-induced colon injury in vivo. Methods: C57BL/6 mice were placed on an automated sleep deprivation system for 72 h to generate an acute sleep deprivation (ASD) model, and low-dose SX (SXL), high-dose SX (SXH), or S-zopiclone (S-z) as a positive control using the oral gavage were given during the whole ASD-induced period for one time each day. The colon length was measured and the colon morphology was visualized using hematoxylin and eosin (H&E) staining. ROS and the redox biomarkers include reduced glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected. Quantitative real-time PCR (qRT-PCR), molecular docking, immunofluorescence and western blotting assays were performed to detect the antioxidant signaling pathways. Results: ASD significantly increased FBG levels, decreased colon length, moderately increased the infiltration of inflammatory cells in the colon mucosa, altered the colon mucosal structure, increased the levels of ROS, GSH, MDA, and SOD activity compared with the controls. These adverse effects were significantly alleviated by SX treatment. ASD induced nuclear translocation of NRF2 in the colon mucosal cells and increased the expression levels of p62, NQO1, and HO1 transcripts and proteins, but these effects were reversed by SX treatment. Conclusion: SX decoction ameliorated ASD-induced oxidative stress and colon injury by suppressing the p62/KEAP1/NRF2/HO1/NQO1 signaling pathway. In conclusion, combined clinical experience, SX may be a promising drug for sleep disorder combined with colitis.
Collapse
Affiliation(s)
- Mengyuan Wang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bo Li
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Yijiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengting Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Teng Cai
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yibing Jia
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Huang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongfei Ke
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Shuyu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| |
Collapse
|
2
|
SQSTM1 Expression in Hepatocellular Carcinoma and Relation to Tumor Recurrence After Radiofrequency Ablation. J Clin Exp Hepatol 2022; 12:774-784. [PMID: 35677515 PMCID: PMC9168718 DOI: 10.1016/j.jceh.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS Autophagy is a process that allows the degradation of detrimental components through the lysosome to maintain cellular homeostasis under variable stimuli. SQSTM1 is a key molecule involved in functional autophagy and is linked to different signaling pathways, oxidative responses, and inflammation. Dysregulation of autophagy is reported in a broad spectrum of diseases. Accumulation of SQSTM1 reflects impaired autophagy, which is related to carcinogenesis and progression of various tumors, including hepatocellular carcinoma (HCC). This study investigated SQSTM1 protein expression in HCC and its relation to the clinicopathological features and the likelihood of tumor recurrence after radiofrequency ablation (RFA). METHODS This study included 50 patients with cirrhotic HCC of Barcelona Clinic Liver Cancer stages 0/A-B eligible for RFA. Tumor and peritumor biopsies were obtained just prior to local ablation and assessed for tumor pathological grade and SQSTM1 expression by immunohistochemistry. Patients were followed for one year after achieving complete ablation to detect any tumor recurrence. RESULTS Serum alpha-fetoprotein level (U = 149.50, P = 0.027∗) and pathological grade of the tumor (χ2 = 12.702, P = 0.002∗) associated significantly with the tumor response to RFA. SQSTM1 expression level was significantly increased in HCC compared to the adjacent peritumor cirrhotic liver tissues (Z = 5.927, P < 0.001∗). Significant direct relation was found between SQSTM1 expression level in HCC and the pathological grade of the tumor (H = 33.789, P < 0.001∗). On follow-up, tumor and peritumor SQSTM1 expression levels performed significantly as a potential predictor of the overall survival, but not the disease recurrence. CONCLUSIONS SQSTM1 expression could determine aggressive HCC, even with reasonable tumor size and number, and identify the subset of HCC patients with short overall survival and unfavorable prognosis. SQSTM1 expression could not predict post-RFA intrahepatic HCC recurrence. SQSTM1 may be a potential biomarker and target for the selection of HCC patients for future therapies.
Collapse
Key Words
- AFP, Alpha fetoprotein
- BCLC, Barcelona Clinic Liver Cancer
- CT, Computed tomography
- CTP, Child-Turcotte-Pugh
- ELISA, Enzyme-linked immunosorbent assay
- FNAC, Fine-needle aspiration cytology
- HCC, Hepatocellular carcinoma
- HCV, Hepatitis C virus
- Keap1, Kelch-like ECH-associated protein 1
- MRI, Magnetic resonance imaging
- NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells
- Nrf2, Nuclear factor erythroid 2-related factor 2
- RFA, Radiofrequency ablation
- SQSTM/p62, Sequestosome 1/protein 62
- SQSTM1
- hepatocellular carcinoma
- mRECIST, modified Response Evaluation Criteria in Solid Tumors
- mTORC1, mammalian target of rapamycin complex 1
- radiofrequency ablation
- tumor recurrence
Collapse
|
3
|
Louka ML, Fawzy AM, Naiem AM, Elseknedy MF, Abdelhalim AE, Abdelghany MA. Vitamin D and K signaling pathways in hepatocellular carcinoma. Gene 2017; 629:108-116. [PMID: 28764978 DOI: 10.1016/j.gene.2017.07.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy, and is now the six most common in between malignancies. Early diagnosis of HCC with prompt treatment increases the opportunity of patients to survive. With the advances in understanding the molecular biology of HCC, new therapeutic strategies to treat HCC have emerged. There is a growing consensus that vitamins are important for the control of various cancers. Biochemical evidence clearly indicates that HCC cells are responsive to the inhibitory effect of vitamin D, vitamin D analogues and vitamin K. In this review, we summarize the mechanisms used by vitamin D and K to influence the development of HCC and the latest development of vitamin analogues for potential HCC therapy.
Collapse
Affiliation(s)
- Manal L Louka
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed M Fawzy
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abdelrahman M Naiem
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mustafa F Elseknedy
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ahmed E Abdelhalim
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mohamed A Abdelghany
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|