1
|
Kang DH, Lee J, Im S, Chung C. Navigating the Complexity of Resistance in Lung Cancer Therapy: Mechanisms, Organoid Models, and Strategies for Overcoming Treatment Failure. Cancers (Basel) 2024; 16:3996. [PMID: 39682183 DOI: 10.3390/cancers16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The persistence of chemotherapy-resistant and dormant cancer cells remains a critical challenge in the treatment of lung cancer. Objectives: This review focuses on non-small cell lung cancer and small cell lung cancer, examining the complex mechanisms that drive treatment resistance. Methods: This review analyzed current studies on chemotherapy resistance in NSCLC and SCLC, focusing on tumor microenvironment, genetic mutations, cancer cell heterogeneity, and emerging therapies. Results: Conventional chemotherapy and targeted therapies, such as tyrosine kinase inhibitors, often fail due to factors including the tumor microenvironment, genetic mutations, and cancer cell heterogeneity. Dormant cancer cells, which can remain undetected in a quiescent state for extended periods, pose a significant risk of recurrence upon reactivation. These cells, along with intrinsic resistance mechanisms, greatly complicate treatment efforts. Understanding these pathways is crucial for the development of more effective therapies. Emerging strategies, including combination therapies that target multiple pathways, are under investigation to improve treatment outcomes. Innovative approaches, such as antibody-drug conjugates and targeted protein degradation, offer promising solutions by directly delivering cytotoxic agents to cancer cells or degrading proteins that are essential for cancer survival. The lung cancer organoid model shows substantial promise to advance both research and clinical applications in this field, enhancing the ability to study resistance mechanisms and develop personalized treatments. The integration of current research underscores the need for continuous innovation in treatment modalities. Conclusions: Personalized strategies that combine novel therapies with an in-depth understanding of tumor biology are essential to overcome the challenges posed by treatment-resistant and dormant cancer cells in lung cancer. A multifaceted approach has the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Lee
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Cao J, J Gu J, Liang Y, Wang B. Evaluate the Prognosis of MYC/TP53 Comutation in Chinese Patients with EGFR-Positive Advanced NSCLC Using Next-Generation Sequencing: A Retrospective Study. Technol Cancer Res Treat 2022; 21:15330338221138213. [PMID: 36524293 PMCID: PMC9761218 DOI: 10.1177/15330338221138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: The purpose of this study was to investigate the effect of MYC and TP53 comutations on the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in Chinese patients with advanced EGFR-positive nonsmall-cell lung cancer (NSCLC). Patients and methods: Tissue samples and information from 65 patients with advanced NSCLC in Northern Jiangsu People's Hospital were collected and analyzed by next-generation sequencing (NGS). Progression-free survival (PFS) and total survival (OS) were the main endpoints, and the objective response rate (ORR) and disease control rate (DCR) were the secondary endpoints. Result: Among 65 patients, 17 had TP53 and MYC wild-type mutations (WT/WT), 36 had TP53 mutant and MYC wild-type mutations (TP53/WT), and 12 had coexisting MYC/TP53 mutations (MYC/TP53). When 12 patients with MYC/TP53 comutation were compared with the other two groups (TP53/WT, WT/WT), mPFS and mOS are significantly lower than those in the other two groups (mPFS: 4.1 months vs 6.0 months, 12.3 months, HR: 0.769, 95% CI: 4.592-7.608, P = .047. mOS: 14.6 months vs 24.1 months, 31.5 months, HR: 3.170, 95% CI: 18.786-31.214, P < .001), and the ORR, DCR of patients with MYC/TP53 comutation was lower than that of the other two groups (ORR, 25% vs 44.4%, 70.6%, P = .045. DCR, 58.3% vs 72.2%, 82.4%, P = .365). Conclusion: Patients with MYC/TP53 comutations with EGFR-positive advanced NSCLC are more likely to develop drug resistance after early treatment with EGFR-TKIs and have a worse clinical outcome.
Collapse
Affiliation(s)
- Jin Cao
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China
| | - Juan J Gu
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China,Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China
| | - Yichen Liang
- Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China
| | - Buhai Wang
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China,Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Buhai Wang, MD, PhD, Medical College,
Yangzhou University, Yangzhou, Jiangsu, 225000, China.
Yichen Liang, MD, PhD, Institute of
Oncology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, China.
| |
Collapse
|
3
|
Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, Ferencz B, Paku S, Lantos A, Fillinger J, Rezeli M, Marko-Varga G, Bogos K, Galffy G, Renyi-Vamos F, Hoda MA, Klepetko W, Hoetzenecker K, Laszlo V, Dome B. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Ther Oncolytics 2021; 20:470-483. [PMID: 33718595 PMCID: PMC7917449 DOI: 10.1016/j.omto.2021.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC; accounting for approximately 13%-15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications.
Collapse
Affiliation(s)
- Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Nandor Barany
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Bence Ferencz
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, 2045 Torokbalint, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|