1
|
Zhang H, Wu J, Cui L, Wang T, Jin H, Guo H, Xie C, Li L, Wang X, Wang Z. Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity. Oncogene 2025; 44:983-995. [PMID: 39814851 DOI: 10.1038/s41388-024-03272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8+ T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8+ T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.
Collapse
Affiliation(s)
- Huanling Zhang
- Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Zhang X, Fang H, Wu W, Jiang C, Wang H, Shi Y. LPIN3 promotes colorectal cancer growth by dampening intratumoral CD8 + T cell effector function. Cancer Immunol Immunother 2025; 74:135. [PMID: 40042548 PMCID: PMC11883066 DOI: 10.1007/s00262-025-03989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
LPIN3 has emerged as a key factor in a variety of malignancies, although its precise role in colorectal cancer (CRC) remains unclear. By analyzing the data from The Cancer Genome Atlas, we discovered that the expression pattern of LPIN3 and the relevant makeup of the immune microenvironment were immensely diverse among tumors. LPIN3 is abundantly expressed in CRC and may enhance tumor growth by activating the β-catenin signaling pathway. In addition, we discovered that LPIN3 might reduce tumor antigen presentation signals, hence suppressing CD8+ T cell-mediated cytotoxicity. Furthermore, high expression of LPIN3 predicts decreased CD8+ T cell infiltration and effector function via bioinformatics analysis. Indeed, CD8+ T cell-mediated cytotoxicity as well as CD8+ T cell infiltration and activation in vivo were strengthened by LPIN3 knockdown. To sum up, our results highlight the part that LPIN3 plays in driving the progression of CRC by regulating β-catenin signaling and CD8+ T cell activity.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Fang
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Wenliang Wu
- Division of Gastrointestinal Surgery, Department of Surgery, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yifei Shi
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
4
|
Wang Y, Lu X, Lin H, Zeng Y, He J, Tan J, Li M. Identification of Fanconi anemia pathway genes as novel prognostic biomarkers and therapeutic targets for breast cancer. Transl Cancer Res 2025; 14:843-864. [PMID: 40104721 PMCID: PMC11912030 DOI: 10.21037/tcr-24-772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/26/2024] [Indexed: 03/20/2025]
Abstract
Background Globally, breast cancer is one of the most common cancers with poor prognosis. The Fanconi anemia (FA) pathway genes maintain genome stability and play important roles in human diseases, including cancer. However, the prognostic values and biological roles of FA pathway genes in breast cancer have not been clarified. This study aims to investigate the potential of FA pathway genes as prognostic biomarkers and therapeutic targets in breast cancer. Methods In this study, the Oncomine Cancer Microarray (ONCOMINE), University of ALabama at Birmingham Cancer (UALCAN), Kaplan-Meier plotter, cBio Cancer Genomics Portal (cBioPortal), Gene Expression Profiling Interactive Analysis (GEPIA), Gene Multi-Association Network Integration Algorithm (GeneMANIA), the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Tumor Immune Estimation Resource (TIMER) databases were used to investigate the transcriptional and survival data of FA pathway genes in patients with breast cancer. Results Most of the FA pathway genes were found to be significantly upregulated in breast cancer tissues when compared to normal tissues. Additionally, the elevated expression levels of FA pathway genes were significantly associated with poor survival outcomes in breast cancer patients. Through functional enrichment analysis, the FA pathway genes were positively associated with cell cycle and nucleoplasm and negatively correlated with signal recognition particle-dependent co-translational protein targeting to membrane and ribosome. Furthermore, the expression levels of FA pathway genes exhibited a significant positive association with immune infiltration. Conclusions The FA pathway genes are potential prognostic biomarkers for breast cancer and may offer effective as well as new strategies for cancer management.
Collapse
Affiliation(s)
- Yunyong Wang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaohang Lu
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongsheng Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Yangling Zeng
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaqian He
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinna Tan
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Mingfen Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Venetis K, Frascarelli C, Bielo LB, Cursano G, Adorisio R, Ivanova M, Mane E, Peruzzo V, Concardi A, Negrelli M, D'Ercole M, Porta FM, Zhan Y, Marra A, Trapani D, Criscitiello C, Curigliano G, Guerini-Rocco E, Fusco N. Mismatch repair (MMR) and microsatellite instability (MSI) phenotypes across solid tumors: A comprehensive cBioPortal study on prevalence and prognostic impact. Eur J Cancer 2025; 217:115233. [PMID: 39827722 DOI: 10.1016/j.ejca.2025.115233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Mismatch repair deficiency (MMR-d) and microsatellite instability (MSI) are prognostic and predictive biomarkers in oncology. Current testing for MMR/MSI relies on immunohistochemistry (IHC) for MMR proteins and molecular assays for MSI detection. This combined diagnostic strategy, however, lacks tumor specificity and does not account for gene variants. This study provides an in-depth analysis of MMR mutations frequency, spectrum, and distribution in solid tumors. Data from 23,893 patients across 11 tumor types, using 66 publicly available studies, were analyzed. MMR-mutated (MMR-m) status was defined by alterations in MLH1, PMS2, MSH2, and/or MSH6; MSI was assessed by MSIsensor. Cases with indeterminate labelling were excluded. Survival was analyzed using the Kaplan-Meier method. Among 19,353 tumors, 949 MMR variants were identified, comprising 432 pathogenic and 517 variants of unknown significance (VUS), as defined by OncoKB. MSH6 mutations were the most frequent (n = 279, 29.4 %), followed by MSH2 (n = 198, 20.9 %), MLH1 (n = 187, 19.7 %), and PMS2 (n = 161, 16.9 %). MMR-m cases were more frequent in endometrial (EC, 20.5 %), colorectal (CRC, 8.2 %), bladder (BLCA, 8.7 %), and gastroesophageal cancers (GEC, 5.4 %). Pathogenic mutations were more common than non-pathogenic in EC, CRC, and GEC (p < 0.001, p = 0.01, p = 0.32, respectively). MMR-m status was not associated with MSI in 247 (48.9 %) cases, including 67 (13.2 %) with pathogenic mutations. The highest concordance between MMR-m and MSI was observed in CRC (65.7 %), EC (91.2 %), and GEC (69.6 %), while the lowest in pancreatic (0.2 %) and lung cancers (0.1 %). MMR-m GECs showed improved overall survival compared to MMR-wt (p = 0.009), a relationship not observed in other tumor types. This study demonstrates that the MMR spectrum is extremely hetoerogeneous in solid tumors, highliting the need for comprehensive and tumor-specific testing strategies.
Collapse
Affiliation(s)
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Riccardo Adorisio
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Virginia Peruzzo
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
8
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Mauri G, Patelli G, Sartore-Bianchi A, Abrignani S, Bodega B, Marsoni S, Costanzo V, Bachi A, Siena S, Bardelli A. Early-onset cancers: Biological bases and clinical implications. Cell Rep Med 2024; 5:101737. [PMID: 39260369 PMCID: PMC11525030 DOI: 10.1016/j.xcrm.2024.101737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Since the nineties, the incidence of sporadic early-onset (EO) cancers has been rising worldwide. The underlying reasons are still unknown. However, identifying them is vital for advancing both prevention and intervention. Here, we exploit available knowledge derived from clinical observations to formulate testable hypotheses aimed at defining the causal factors of this epidemic and discuss how to experimentally test them. We explore the potential impact of exposome changes from the millennials to contemporary young generations, considering both environmental exposures and enhanced susceptibilities to EO-cancer development. We emphasize how establishing the time required for an EO cancer to develop is relevant to defining future screening strategies. Finally, we discuss the importance of integrating multi-dimensional data from international collaborations to generate comprehensive knowledge and translate these findings back into clinical practice.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
10
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Zhang M, Li W, Zhao Y, Qi L, Xiao Y, Liu D, Peng T. Molecular characterization analysis of PANoptosis-related genes in colorectal cancer based on bioinformatic analysis. PLoS One 2024; 19:e0307651. [PMID: 39186800 PMCID: PMC11346968 DOI: 10.1371/journal.pone.0307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the second principal contributor to cancer-related fatalities. Recently, emerging research has emphasized the role of pan apoptosis (PANoptosis) in tumor development and anti-tumor therapy. In the course of this investigation, we meticulously identified and conducted a correlation analysis between differentially expressed genes associated with PANoptosis in CRC (CPAN_DEGs) and the proportion of immune cells. Subsequently, we formulated a prognostic score based on the CPAN_DEGs. Further our analysis revealed a noteworthy reduction in UNC5D mRNA expression within HCT116, HT29 and SW480 cells, as validated by qRT-PCR assay. Furthermore, scrutinizing the TCGA database unveiled a distinctive trend wherein individuals with the low UNC5D expression exhibited significantly reduced overall survival compared to their counterparts with the high UNC5D levels. The drug susceptibility analysis of UNC5D was further performed, which showed that UNC5D was corassociated with the sensitivity of CRC to 6-Thioguanine. The outcomes of our investigation underscore the mechanisms by which PANoptosis influences immune dysregulation as well as prognostic outcome in CRC.
Collapse
Affiliation(s)
- Mengyang Zhang
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Wen Li
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
- College of Pharmacy, Dali University, Yunnan, China
| | - Yubo Zhao
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Yonglong Xiao
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Donglian Liu
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - TieLi Peng
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| |
Collapse
|
12
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
13
|
Xu Y, Liu K, Li C, Li M, Zhou X, Sun M, Zhang L, Wang S, Liu F, Xu Y. Microsatellite instability in mismatch repair proficient colorectal cancer: clinical features and underlying molecular mechanisms. EBioMedicine 2024; 103:105142. [PMID: 38691939 PMCID: PMC11070601 DOI: 10.1016/j.ebiom.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kai Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Wang X, Lin M, Zhu L, Ye Z. GAS-STING: a classical DNA recognition pathways to tumor therapy. Front Immunol 2023; 14:1200245. [PMID: 37920470 PMCID: PMC10618366 DOI: 10.3389/fimmu.2023.1200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS), recognized as the primary DNA sensor within cells, possesses the capability to identify foreign DNA molecules along with free DNA fragments. This identification process facilitates the production of type I IFNs through the activator of the interferon gene (STING) which induces the phosphorylation of downstream transcription factors. This action characterizes the most archetypal biological functionality of the cGAS-STING pathway. When treated with anti-tumor agents, cells experience DNA damage that triggers activation of the cGAS-STING pathway, culminating in the expression of type I IFNs and associated downstream interferon-stimulated genes. cGAS-STING is one of the important innate immune pathways,the role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.type I IFNs promote the recruitment and activation of inflammatory cells (including NK cells) at the tumor site.Type I IFNs also can promote the activation and maturation of dendritic cel(DC), improve the antigen presentation of CD4+T lymphocytes, and enhance the cross-presentation of CD8+T lymphocytes to upregulating anti-tumor responses. This review discussed the cGAS-STING signaling and its mechanism and biological function in traditional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Xinrui Wang
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meijia Lin
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liping Zhu
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhoujie Ye
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, Ely ZA, Jaeger AM, Rideout WM, Zhang D, Bhutkar A, Beytagh MC, Canner DA, Jaramillo GC, Bronson RT, Naranjo S, Jin A, Patten JJ, Cruz AM, Shanahan SL, Cortes-Ciriano I, Jacks T. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat Genet 2023; 55:1686-1695. [PMID: 37709863 PMCID: PMC10562252 DOI: 10.1038/s41588-023-01499-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.
Collapse
Affiliation(s)
- Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan J Sacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel C Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abbey Jin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J J Patten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda M Cruz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Harrold EC, Foote MB, Rousseau B, Walch H, Kemel Y, Richards AL, Keane F, Cercek A, Yaeger R, Rathkopf D, Segal NH, Patel Z, Maio A, Borio M, O'Reilly EM, Reidy D, Desai A, Janjigian YY, Murciano-Goroff YR, Carlo MI, Latham A, Liu YL, Walsh MF, Ilson D, Rosenberg JE, Markowitz AJ, Weiser MR, Rossi AM, Vanderbilt C, Mandelker D, Bandlamudi C, Offit K, Berger MF, Solit DB, Saltz L, Shia J, Diaz LA, Stadler ZK. Neoplasia risk in patients with Lynch syndrome treated with immune checkpoint blockade. Nat Med 2023; 29:2458-2463. [PMID: 37845474 PMCID: PMC10870255 DOI: 10.1038/s41591-023-02544-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/15/2023] [Indexed: 10/18/2023]
Abstract
Metastatic and localized mismatch repair-deficient (dMMR) tumors are exquisitely sensitive to immune checkpoint blockade (ICB). The ability of ICB to prevent dMMR malignant or pre-malignant neoplasia development in patients with Lynch syndrome (LS) is unknown. Of 172 cancer-affected patients with LS who had received ≥1 ICB cycles, 21 (12%) developed subsequent malignancies after ICB exposure, 91% (29/32) of which were dMMR, with median time to development of 21 months (interquartile range, 6-38). Twenty-four of 61 (39%) ICB-treated patients who subsequently underwent surveillance colonoscopy had premalignant polyps. Within matched pre-ICB and post-ICB follow-up periods, the overall rate of tumor development was unchanged; however, on subgroup analysis, a decreased incidence of post-ICB visceral tumors was observed. These data suggest that ICB treatment of LS-associated tumors does not eliminate risk of new neoplasia development, and LS-specific surveillance strategies should continue. These data have implications for immunopreventative strategies and provide insight into the immunobiology of dMMR tumors.
Collapse
Affiliation(s)
- Emily C Harrold
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Foote
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fergus Keane
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Cercek
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Rona Yaeger
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Dana Rathkopf
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Neil H Segal
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Zalak Patel
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matilde Borio
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Diane Reidy
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Avni Desai
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Yelena Y Janjigian
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Yonina R Murciano-Goroff
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying L Liu
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Walsh
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Ilson
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jonathan E Rosenberg
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Arnold J Markowitz
- Weill Cornell Medical College, New York, NY, USA
- Gastroenterology, Hepatology and Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin R Weiser
- Weill Cornell Medical College, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony M Rossi
- Weill Cornell Medical College, New York, NY, USA
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Weill Cornell Medical College, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonard Saltz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jinru Shia
- Weill Cornell Medical College, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Diaz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Zsofia K Stadler
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko FMS, Patel K, Mining SK. Mutational spectrum of DNA damage and mismatch repair genes in prostate cancer. Front Genet 2023; 14:1231536. [PMID: 37732318 PMCID: PMC10507418 DOI: 10.3389/fgene.2023.1231536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Over the past few years, a number of studies have revealed that a significant number of men with prostate cancer had genetic defects in the DNA damage repair gene response and mismatch repair genes. Certain of these modifications, notably gene alterations known as homologous recombination (HRR) genes; PALB2, CHEK2 BRCA1, BRCA2, ATM, and genes for DNA mismatch repair (MMR); MLH1, MSH2, MSH6, and PMS2 are connected to a higher risk of prostate cancer and more severe types of the disease. The DNA damage repair (DDR) is essential for constructing and diversifying the antigen receptor genes required for T and B cell development. But this DDR imbalance results in stress on DNA replication and transcription, accumulation of mutations, and even cell death, which compromises tissue homeostasis. Due to these impacts of DDR anomalies, tumor immunity may be impacted, which may encourage the growth of tumors, the release of inflammatory cytokines, and aberrant immune reactions. In a similar vein, people who have altered MMR gene may benefit greatly from immunotherapy. Therefore, for these treatments, mutational genetic testing is indicated. Mismatch repair gene (MMR) defects are also more prevalent than previously thought, especially in patients with metastatic disease, high Gleason scores, and diverse histologies. This review summarizes the current information on the mutation spectrum and clinical significance of DDR mechanisms, such as HRR and MMR abnormalities in prostate cancer, and explains how patient management is evolving as a result of this understanding.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | | | - Fidelice M. S. Mafumiko
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Simeon K. Mining
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| |
Collapse
|
18
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
19
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
20
|
Anandappa G, Overman MJ. Harnessing the therapeutic vulnerability of MMR heterogeneity in colorectal cancer. Cell Rep Med 2023; 4:100908. [PMID: 36652917 PMCID: PMC9873932 DOI: 10.1016/j.xcrm.2022.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In a recent issue of Cancer Cell, Amodio and colleagues report an interesting method of modulating immunosurveillance in colorectal tumors with DNA mismatch repair (MMR) heterogeneity.1 By pharmacologically enriching the MMR deficient (MMRd) component using 6-thioguanine, they demonstrate improved tumor control in murine models.
Collapse
Affiliation(s)
- Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author
| |
Collapse
|
21
|
Rui S, Wang D, Huang Y, Xu J, Zhou H, Zhang H. Prognostic value of SLC4A4 and its correlation with the microsatellite instability in colorectal cancer. Front Oncol 2023; 13:1179120. [PMID: 37152025 PMCID: PMC10154614 DOI: 10.3389/fonc.2023.1179120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Objective To explore new biomarkers related to microsatellite instability in order to better predict prognosis and guide medication. Methods The "limma" R package was used to identify differentially expressed genes in GSE24514, and then weighted correlation network analysis was used to select key genes. Different cell types in the tumor microenvironment were identified and analyzed by single-cell sequencing, with a Lasso regression model used to screen prognostic variables. Furthermore, the correlation between microsatellite instability and potential prognostic variables was explored, as well as the expression characteristics and clinical characteristics of the prognostic variables in the TCGA, UALCAN, and HPA databases. PCR assay was used to investigate the expression of SLC4A4 in colorectal cancer cell lines. Finally, we further verified the expression of SLC4A4 by immunohistochemistry. Results First, 844 differentially expressed genes in GSE24514 were identified. Subsequently, weighted co-expression network analysis (WGCNA) of GSE24514 obtained all the genes significantly associated with microsatellite instability (MSI), a total of 1452. Analysis of GSE166555 single cell sequencing data set yielded 1564 differentially expressed genes. The gene sets obtained from the above three analysis processes were intersected, and 174 genes were finally obtained. The Lasso regression model revealed two potential prognostic genes, TIMP1 and SLC4A4, of which, there was a stronger correlation between microsatellite instability and SLC4A4. The mRNA and protein expression of SLC4A4 was significantly decreased in tumors, and patients with low SLC4A4 expression had a poor prognosis. In addition, SLC4A4 was specifically expressed in epithelial cells. In the microenvironment of colorectal cancer, malignant cells have a strong interaction with different stromal cells. PCR showed that SLC4A4 was significantly down-regulated in colorectal cancer cell lines Caco-2, HCT116 and HT29 compared with normal control NCM460 cell lines. Immunohistochemistry also showed low expression of SLC4A4 in colorectal cancer. Conclusion SLC4A4, as a tumor suppressor gene, is significantly downregulated and positively correlated with microsatellite instability, thus it may be combined with microsatellite instability to guide colorectal cancer treatment.
Collapse
Affiliation(s)
- Shaorui Rui
- Department of General Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yong Huang
- Department of General Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jingyun Xu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Huai’an, China
- The Institute of Life Sciences, Jiangsu College of Nursing, Huai’an, China
- *Correspondence: Hesong Zhang, ; Hailang Zhou,
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Wuhu, Wuhu, China
- *Correspondence: Hesong Zhang, ; Hailang Zhou,
| |
Collapse
|