1
|
He JJ, Xiong WL, Sun WQ, Pan QY, Xie LT, Jiang TA. Advances and current research status of early diagnosis for gallbladder cancer. Hepatobiliary Pancreat Dis Int 2025; 24:239-251. [PMID: 39393997 DOI: 10.1016/j.hbpd.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024]
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor in the biliary system, characterized by high malignancy, aggressiveness, and poor prognosis. Early diagnosis holds paramount importance in ameliorating therapeutic outcomes. Presently, the clinical diagnosis of GBC primarily relies on clinical-radiological-pathological approach. However, there remains a potential for missed diagnosis and misdiagnose in the realm of clinical practice. We firstly analyzed the blood-based biomarkers, such as carcinoembryonic antigen and carbohydrate antigen 19-9. Subsequently, we evaluated the diagnostic performance of various imaging modalities, including ultrasound (US), endoscopic ultrasound (EUS), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT) and pathological examination, emphasizing their strengths and limitations in detecting early-stage GBC. Furthermore, we explored the potential of emerging technologies, particularly artificial intelligence (AI) and liquid biopsy, to revolutionize GBC diagnosis. AI algorithms have demonstrated improved image analysis capabilities, while liquid biopsy offers the promise of non-invasive and real-time monitoring. However, the translation of these advancements into clinical practice necessitates further validation and standardization. The review highlighted the advantages and limitations of current diagnostic approaches and underscored the need for innovative strategies to enhance diagnostic accuracy of GBC. In addition, we emphasized the importance of multidisciplinary collaboration to improve early diagnosis of GBC and ultimately patient outcomes. This review endeavoured to impart fresh perspectives and insights into the early diagnosis of GBC.
Collapse
Affiliation(s)
- Jia-Jia He
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Ultrasound Medicine, Beilun District People's Hospital, Ningbo 315800, China
| | - Wei-Lv Xiong
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Ultrasound Medicine, Huzhou Central Hospital, Huzhou 313000, China
| | - Wei-Qi Sun
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Ultrasound Medicine, The Second Affiliated Hospital, Jiaxing University, Jiaxing 314000, China
| | - Qun-Yan Pan
- Department of Ultrasound Medicine, Beilun District People's Hospital, Ningbo 315800, China
| | - Li-Ting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tian-An Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Shen H, Wang Z, Chen Y, Huang C, Xu L, Tong Y, Zhang H, Lu Y, Li S, Fu Z. Integrative genome-wide aberrant DNA methylation and transcriptome analysis identifies diagnostic markers for colorectal cancer. Arch Toxicol 2025; 99:2179-2196. [PMID: 40059124 DOI: 10.1007/s00204-025-03990-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025]
Abstract
Colorectal cancer remains a major cause of cancer mortality, with limited sensitivity in current diagnostics. Aberrant DNA methylation in expression-regulating sites shows biomarker potential, though few studies explore such methylation-based diagnostic tools for colorectal cancer. We conducted genome-wide DNA methylation and RNA sequencing on matched colorectal cancer and normal tissues to identify expression-related differentially methylated CpG sites (DMCs). Diagnostic models were constructed with training and validation sets of 689 samples. Machine learning techniques (random forest, elastic net, support vector machine) were employed to identify optimal diagnostic markers. Methylation-specific PCR confirmed marker-host gene regulatory relationships, and targeted bisulfite sequencing validated these markers in an independent cohort of 200 samples. Host genes roles in colorectal cancer pathogenesis were further investigated through in vivo and in vitro assays and tissue microarray analysis. We identified 64,824 DMCs in colorectal cancer, with 442 associated with gene expression. These sites impact transcription factor binding, and their host genes are linked to chemotherapy resistance. Diagnostic panels showed high efficacy, with methylation changes significantly impacting RNA and protein expression of host genes. Markers cg16851417, cg19498960, and cg16302790 were validated in blood for noninvasive screening. Clustering expression-related DMCs with similar methylation patterns may facilitate diagnostic tools development. Host genes SIM2, PDX1, and TNS4 influence colorectal cancer progression and may impact therapy response. Expression-related DMCs hold strong potential as colorectal cancer biomarkers, with implications for prognosis and therapy. The specific expression patterns of these DMCs in host genes support development of non-invasive blood-based diagnostic tools.
Collapse
Affiliation(s)
- Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Tong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shuwei Li
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zheng H, Hua Y, Yang S, Liu V, Huang N, Li J, Kleeff J, Liao Q, Liu Q. Epigenetic modification and tumor immunity: Unraveling the interplay with the tumor microenvironment and its therapeutic vulnerability and implications. Cancer Lett 2025; 616:217587. [PMID: 40023391 DOI: 10.1016/j.canlet.2025.217587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In the ever-evolving arena of molecular biology, epigenetic modifications stand out as crucial determinants in the orchestration of cellular identity, function, and fate. This review analyzes the close relationship between epigenetics and tumor immunity, emphasizing the intricate interplay with the tumor microenvironment (TME). Rooted in the knowledge that the incidence of cancer correlates strongly with the biological and genetic age, we highlight DNA methylation as a cornerstone of the "epigenetic aging" process with close ties to tumorigenesis. The TME, with its diverse cellular and acellular constituents, is an active participant in tumor biology, further complicated by epigenetic alterations. These modifications, from DNA methylation to histone changes, not only shape the TME but are reciprocally influenced by it, reinforcing a cycle that propels malignancy. Through this exploration, we underline the importance of understanding this mutual relationship, as it holds significant implications for tumor growth, heterogeneity, and therapeutic resistance. Ultimately, this review illuminates the potential of harnessing epigenetic insights for innovative cancer therapeutic strategies, pointing towards a promising avenue for future cancer management.
Collapse
Affiliation(s)
- Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Vincent Liu
- Tsinghua University School of Basic Medical Sciences, Beijing, 100084, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jorg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Zhang X, Gao Y, Zhang S, Wang Y, Du Y, Hao S, Ni T. The Regulation of Cellular Senescence in Cancer. Biomolecules 2025; 15:448. [PMID: 40149983 PMCID: PMC11940315 DOI: 10.3390/biom15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Cellular senescence is a stable state of cell cycle arrest caused by telomere shortening or various stresses. After senescence, cells cease dividing and exhibit many age-related characteristics. Unlike the halted proliferation of senescence cells, cancer cells are considered to have unlimited growth potential. When cells display senescence-related features, such as telomere loss or stem cell failure, they can inhibit tumor development. Therefore, inducing cells to enter a senescence state can serve as a barrier to tumor cell development. However, many recent studies have found that sustained senescence of tumor cells or normal cells under certain circumstances can exert environment-dependent effects of tumor promotion and inhibition by producing various cytokines. In this review, we first introduce the causes and characteristics of induced cellular senescence, analyze the senescence process of immune cells and cancer cells, and then discuss the dual regulatory role of cell senescence on tumor growth and senescence-induced therapies targeting cancer cells. Finally, we discuss the role of senescence in tumor progression and treatment opportunities, and propose further studies on cellular senescence and cancer therapy.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Siyu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yixiong Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| |
Collapse
|
5
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H. Advancements in proteogenomics for preclinical targeted cancer therapy research. BIOPHYSICS REPORTS 2025; 11:56-76. [PMID: 40070661 PMCID: PMC11891078 DOI: 10.52601/bpr.2024.240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025] Open
Abstract
Advancements in molecular characterization technologies have accelerated targeted cancer therapy research at unprecedented resolution and dimensionality. Integrating comprehensive multi-omic molecular profiling of a tumor, proteogenomics, marks a transformative milestone for preclinical cancer research. In this paper, we initially provided an overview of proteogenomics in cancer research, spanning genomics, transcriptomics, and proteomics. Subsequently, the applications were introduced and examined from different perspectives, including but not limited to genetic alterations, molecular quantifications, single-cell patterns, different post-translational modification levels, subtype signatures, and immune landscape. We also paid attention to the combined multi-omics data analysis and pan-cancer analysis. This paper highlights the crucial role of proteogenomics in preclinical targeted cancer therapy research, including but not limited to elucidating the mechanisms of tumorigenesis, discovering effective therapeutic targets and promising biomarkers, and developing subtype-specific therapies.
Collapse
Affiliation(s)
- Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanli Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qian Liu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
7
|
Li M, Xia Z, Wang R, Xi M, Hou M. Unveiling DNA methylation: early diagnosis, risk assessment, and therapy for endometrial cancer. Front Oncol 2025; 14:1455255. [PMID: 39902129 PMCID: PMC11788147 DOI: 10.3389/fonc.2024.1455255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Endometrial cancer (EC), one of the most common gynecologic malignancies worldwide, poses a significant burden particularly among young women, with poor treatment outcomes and prognosis for advanced and recurrent patients. Epigenetic changes, encompassing DNA methylation, are involved in the occurrence and progression of tumors and hold promise as effective tools for screening, early diagnosis, treatment strategy, efficacy evaluation, and prognosis analysis. This review provides a comprehensive summary of DNA methylation-based early diagnostic biomarkers in EC, with a focus on recent valuable research findings published in the past two years. The discussion is organized according to sample sources, including cervical scraping, vaginal fluid, urine, blood, and tissue. Additionally, we outline the role of DNA methylation in EC risk assessment, such as carcinogenesis risk, feasibility of fertility preservation approaches, and overall prognosis, aiming to provide personalized treatment decisions for patients. Finally, we review researches on DNA methylation in resistance to first-line treatment of EC and the development of new drugs, and envision the future applications of DNA methylation in EC.
Collapse
Affiliation(s)
- Minzhen Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ruiyu Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Minmin Hou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
8
|
Su Z, Su Y, Shen X, Zhang J, Zeng T, Li J, Chen S, Shao K, Zhang S, Luo D, Hu L, Guo X, Li H. Analysis of differentially methylated sites and regions associated with intrauterine transmission of hepatitis B virus in infants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105705. [PMID: 39674522 DOI: 10.1016/j.meegid.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection. METHODS This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained. RESULTS We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding. CONCLUSIONS Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
Collapse
Affiliation(s)
- Zhengqin Su
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Yongjian Su
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, China
| | - Xiaozhen Shen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Jiawei Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Ting Zeng
- Liuzhou Maternal and Child Health Care Hospital, Guangxi, China
| | - Jialing Li
- Zhongshan Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Shiyi Chen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Kai Shao
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Shiyue Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Liping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, China; Key Laboratory for Prevention and Treatment of Viral Hepatitis, Guangxi, China.
| | - Xiaojing Guo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China.
| | - Hai Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China.
| |
Collapse
|
9
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Li W, Zeng M, Ning Y, Lu R, Wei Y, Xu Z, Wei H, Pu J. m 6A-Methylated NUTM2B-AS1 Promotes Hepatocellular Carcinoma Stemness Feature via Epigenetically Activating BMPR1A Transcription. J Hepatocell Carcinoma 2024; 11:2393-2411. [PMID: 39649245 PMCID: PMC11624692 DOI: 10.2147/jhc.s480522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Oncofetal proteins are the optimal diagnostic biomarkers and therapeutic targets for HCC. As the most abundant modification in RNA, N6-methyladenosine (m6A) has been reported to be involved in HCC initiation and progression. However, whether m6A has oncofetal characteristics remains unknown. Methods Gene expression in HCC tissues and cells was detected using qPCR. The level of m6A methylation was determined using methylated RNA immunoprecipitation assay. The biological roles of NUTM2B-AS1 in HCC were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine incorporation, and spheroid formation assays. The mechanisms underlying the roles of NUTM2B-AS1 were explored using RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), chromatin immunoprecipitation (ChIP), and assay for transposase-accessible chromatin (ATAC). Results NUTM2B-AS1 was identified as a novel oncofetal long noncoding RNA that was upregulated in the fetal liver and HCC and silenced in adult liver tissues. METTL3 and METTL16 induce m6A hypermethylation of NUTM2B-AS1. The m6A methylation levels of NUTM2B-AS1 exhibit oncofetal characteristics. m6A methylation upregulates NUTM2B-AS1 expression by increasing NUTM2B-AS1 transcript stability. m6A-methylated NUTM2B-AS1 promotes HCC cell proliferation and stemness via epigenetically activating BMPR1A expression. NUTM2B-AS1 specifically binds to BMPR1A promoter. m6A-methylated NUTM2B-AS1 is recognized by the m6A reader YTHDC2, which further binds to the H3K4 methyltransferase MLL1. m6A-methylated NUTM2B-AS1 recruits YTHDC2 and MLL1 to BMPR1A promoter, leading to increased H3K4me3 and chromatin accessibility at BMPR1A promoter. Functional rescue assays suggest that BMPR1A is a critical mediator of the oncogenic role of m6A-methylated NUTM2B-AS1 in HCC. Conclusion METTL3- and METTL16-mediated m6A methylation of NUTM2B-AS1 is a novel oncofetal molecular event in HCC that promotes HCC stemness via epigenetically activating BMPR1A transcription.
Collapse
Affiliation(s)
- Wenchuan Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
11
|
Ren LL, Song YR, Song ZC, Yang H, Zhang Q, Ji MM, Xiao N, Wen M, Wang JH. Enhancing antitumor activity of herceptin in HER2-positive breast cancer cells: a novel DNMT-1 inhibitor approach. Discov Oncol 2024; 15:640. [PMID: 39527385 PMCID: PMC11555163 DOI: 10.1007/s12672-024-01508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
HER2 antagonists remain the cornerstone of therapy for patients with HER2-positive breast cancer. This study introduces a novel small-molecule inhibitor of DNA methyltransferase 1 (DNMT-1), referred to as DI-1, designed to synergize with HER2 antagonists in treating HER2-positive breast cancer cells. Clinical data reveal a negative correlation between DNMT-1 expression and PTEN levels, and a positive correlation with the methylation rates of PTEN's promoter. In experiments with SKBR3 and BT474 cells, DI-1 effectively reduced the methylation of PTEN's promoter region, thereby upregulating PTEN expression. This upregulation, in turn, enhanced the cells' sensitivity to HER2 antagonists, indicating that DI-1's mechanism involves inhibiting DNMT-1's recruitment to PTEN's promoter region. Consequently, by increasing PTEN expression, DI-1 amplifies the sensitivity of HER2-positive breast cancer cells to treatment, suggesting its potential as a promising therapeutic strategy in this context.
Collapse
Affiliation(s)
- Li-Li Ren
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Yan-Ru Song
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Zhen-Chuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hua Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China.
| | - Qian Zhang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Meng-Meng Ji
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Na Xiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ming Wen
- Department of Surgery, the Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ji-Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
12
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Bilbao I, Recalde M, Daian F, Herranz JM, Elizalde M, Iñarrairaegui M, Canale M, Fernández-Barrena MG, Casadei-Gardini A, Sangro B, Ávila MA, Landecho Acha MF, Berasain C, Arechederra M. Comprehensive in silico CpG methylation analysis in hepatocellular carcinoma identifies tissue- and tumor-type specific marks disconnected from gene expression. J Physiol Biochem 2024; 80:865-879. [PMID: 39305372 PMCID: PMC11682006 DOI: 10.1007/s13105-024-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/27/2024] [Indexed: 12/29/2024]
Abstract
DNA methylation is crucial for chromatin structure, transcription regulation and genome stability, defining cellular identity. Aberrant hypermethylation of CpG-rich regions is common in cancer, influencing gene expression. However, the specific contributions of individual epigenetic modifications to tumorigenesis remain under investigation. In hepatocellular carcinoma (HCC), DNA methylation alterations are documented as in other tumor types. We aimed to identify hypermethylated CpGs in HCC, assess their specificity across other tumor types, and investigate their impact on gene expression. To this end, public methylomes from HCC, other liver diseases, and 27 tumor types as well as expression data from TCGA-LIHC and GTEx were analyzed. This study identified 39 CpG sites that were hypermethylated in HCC compared to control liver tissue, and were located within promoter, gene bodies, and intergenic CpG islands. Notably, these CpGs were predominantly unmethylated in healthy liver tissue and other normal tissues. Comparative analysis with 27 other tumors revealed both common and HCC-specific hypermethylated CpGs. Interestingly, the HCC-hypermethylated genes showed minimal expression in the different healthy tissues, with marginal changes in the level of expression in the corresponding tumors. These findings confirm previous evidence on the limited influence of DNA hypermethylation on gene expression regulation in cancer. It also highlights the existence of mechanisms that allow the selection of tissue-specific methylation marks in normally unexpressed genes during carcinogenesis. Overall, our study contributes to demonstrate the complexity of cancer epigenetics, emphasizing the need of better understanding the interplay between DNA methylation, gene expression dynamics, and tumorigenesis.
Collapse
Affiliation(s)
- Idoia Bilbao
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Miriam Recalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Fabrice Daian
- Laboratoire d'Informatique Et Système (LIS), Aix Marseille Univ, Aix Marseille Univ, CNRS, 13009, Marseille, France
| | - José Maria Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matteo Canale
- Biosciences Laboratory-IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Andrea Casadei-Gardini
- Medical Oncology Department, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
14
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
15
|
Beird HC, Cloutier JM, Gokgoz N, Eeles C, Griffin AM, Ingram DR, Wani KM, Segura RL, Cohen L, Ho C, Wunder JS, Andrulis IL, Futreal PA, Haibe-Kains B, Lazar AJ, Wang WL, Przybyl J, Demicco EG. Epigenomic and Transcriptomic Profiling of Solitary Fibrous Tumors Identifies Site-Specific Patterns and Candidate Genes Regulated by DNA Methylation. J Transl Med 2024; 104:102146. [PMID: 39357799 DOI: 10.1016/j.labinv.2024.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
A solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that can arise at any anatomical site and is characterized by recurrent NAB2::STAT6 fusions and metastatic progression in 10% to 30%. The cell of origin has not been identified. Despite some progress in understanding the contribution of heterogeneous fusion types and secondary mutations to SFT biology, epigenetic alterations in extrameningeal SFT remain largely unexplored, and most sarcoma research to date has focused on the use of methylation profiling for tumor classification. We interrogated genome-wide DNA methylation in 79 SFTs to identify informative epigenetic changes. RNA-seq data from targeted panels and data from The Cancer Genome Atlas (TCGA) were used for orthogonal validation of selected findings. In unsupervised clustering analysis, the top 500 most variable cytosine-guanine sites segregated SFTs by primary anatomical site. Differentially methylated genes associated with the primary SFT site included EGFR; TBX15; multiple HOX genes; and their cofactors EBF1, EBF3, and PBX1; as well as RUNX1 and MEIS1. Of the 20 DMGs interrogated on the RNA-seq panel, 12 were significantly differentially expressed according to site. However, except TBX15, most of these also showed differential expression according to NAB2::STAT6 fusion type, suggesting that the fusion oncogene contributes to the transcriptional regulation of these genes. Transcriptomic data confirmed an inverse correlation between gene methylation and the expression of TBX15 in both SFT and TCGA sarcomas. TBX15 also showed differential mRNA expression and 5' UTR methylation between tumors in different anatomical sites in TCGA data. In all analyses, TBX15 methylation and mRNA expression retained the strongest association with tissue of origin in SFT and other sarcomas, suggesting a possible marker to distinguish metastatic tumors from new primaries without genomic profiling. Epigenetic signatures may further help to identify SFT progenitor cells at different anatomical sites.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey M Cloutier
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada
| | - Christopher Eeles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony M Griffin
- University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Davis R Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano Segura
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luca Cohen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Ho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada; University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada; Department of Molecular Genetics Canada, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanna Przybyl
- Department of Surgery, McGill University & Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elizabeth G Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Tuminello S, Durmus N, Snuderl M, Chen Y, Shao Y, Reibman J, Arslan AA, Taioli E. DNA Methylation as a Molecular Mechanism of Carcinogenesis in World Trade Center Dust Exposure: Insights from a Structured Literature Review. Biomolecules 2024; 14:1302. [PMID: 39456235 PMCID: PMC11506790 DOI: 10.3390/biom14101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The collapse of the World Trade Center (WTC) buildings in New York City generated a large plume of dust and smoke. WTC dust contained human carcinogens including metals, asbestos, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs, including polychlorinated biphenyls (PCBs) and dioxins), and benzene. Excess levels of many of these carcinogens have been detected in biological samples of WTC-exposed persons, for whom cancer risk is elevated. As confirmed in this structured literature review (n studies = 80), all carcinogens present in the settled WTC dust (metals, asbestos, benzene, PAHs, POPs) have previously been shown to be associated with DNA methylation dysregulation of key cancer-related genes and pathways. DNA methylation is, therefore, a likely molecular mechanism through which WTC exposures may influence the process of carcinogenesis.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nedim Durmus
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA;
| | - Yu Chen
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
17
|
Xie Z, Lin H, Huang Y, Wang X, Lin H, Xu M, Wu J, Wu Y, Shen H, Zhang Q, Chen J, Deng Y, Xu Z, Chen Z, Lin Y, Han Y, Lin L, Yan L, Li Q, Lin X, Chi P. BAP1-mediated MAFF deubiquitylation regulates tumor growth and is associated with adverse outcomes in colorectal cancer. Eur J Cancer 2024; 210:114278. [PMID: 39151323 DOI: 10.1016/j.ejca.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Despite improvements in colorectal cancer (CRC) treatment, the prognosis for advanced CRC patients remains poor. Disruption of protein stability is one of the important factors in cancer development and progression. In this study, we aim to identify and analyze novel dysregulated proteins in CRC, assessing their significance and the mechanisms. METHODS Using quantitative proteomics, expression pattern analysis, and gain-of-function/loss-of-function experiments, we identify novel functional protein dysregulated by ubiquitin-proteasome axis in CRC. Prognostic significance was evaluated in a training cohort of 546 patients and externally validated in 794 patients. Mechanistic insights are gained through molecular biology experiments, deubiquitinating enzymes (DUBs) expression library screening, and RNA sequencing. RESULTS MAFF protein emerged as the top novel candidate substrate regulated by ubiquitin-proteasome in CRC. MAFF protein was preferentially downregulated in CRC compared to adjacent normal tissues. More importantly, multicenter cohort study identified reduced MAFF protein expression as an independent predictor of overall and disease-free survival in CRC patients. The in vitro and vivo assays showed that MAFF overexpression inhibited CRC growth, while its knockdown had the opposite effect. Intriguingly, we found the abnormal expression of MAFF protein was predominantly regulated via ubiquitination of MAFF, with K48-ubiquitin being dominant. BAP1 as a nuclear deubiquitinating enzyme (DUB), bound to and deubiquitinated MAFF, thereby stabilizing it. Such stabilization upregulated DUSP5 expression, resulting in the inhibition of ERK phosphorylation. CONCLUSIONS This study describes a novel BAP1-MAFF signaling axis which is crucial for CRC growth, potentially serving as a therapeutic target and a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hanbin Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hongyue Lin
- Department of General Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Meifang Xu
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jiashu Wu
- Department of Science and Technology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Hao Shen
- Department of Navy Environmental and Occupational Health, Naval Medical University, Shanghai, China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhua Chen
- Follow up Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Deng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zongbin Xu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zhiping Chen
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Lin
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yuting Han
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lin Lin
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Linzhu Yan
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qingyun Li
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Li Z, Zhao Y, Huang P, Wu Z, Ouyang D, Nyarko AO, Ai L, Zhang Z, Chang S. Pan-cancer analysis of the immunological and oncogenic roles of ATAD2 with verification in papillary thyroid carcinoma. Sci Rep 2024; 14:22263. [PMID: 39333272 PMCID: PMC11436736 DOI: 10.1038/s41598-024-73274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
ATAD2 (ATPase Family AAA Domain-Containing 2) is highly expressed across varies tumor types, yet its common roles in tumor progression and immune interaction remain unclear. We analyzed the expression and alteration profiles of ATAD2, along with its diagnostic and prognostic role in pan-cancer, utilizing TCGA, GTEx, CPTAC, HPA, and cBioPortal databases. Furthermore, we examined the relationship between ATAD2 and immune infiltration utilizing single-cell sequencing data and TCGA database. Additionally, the expression and oncogenic functions of ATAD2 were verified in papillary thyroid carcinoma (PTC) through MTT, wound-healing, transwell, and flow cytometry assays. Our results revealed significant overexpression of ATAD2 in most cancers, strongly associated with poor prognosis. Amplification was the most frequent alteration type of ATAD2, with its mutation correlating with improved overall survival. ATAD2 was positively correlated with multiple inhibitory immune checkpoints and closely associated with the immunosuppressive microenvironment, particularly in PTC. In vitro experiments demonstrated that ATAD2 promoted the proliferation, migration, and invasion of PTC cells by activating the PI3K-AKT pathway and modulating the G1/S cell cycle checkpoint. Collectively, ATAD2 holds promise as a biomarker for pan-cancer diagnosis and prognosis, as well as a predictor of immunotherapeutic responsiveness and a therapeutic target to enhance the efficacy of existing anti-tumor immune therapies.
Collapse
Affiliation(s)
- Zhecheng Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yaxin Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhaoyi Wu
- Department of Thyroid and Breast Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Human Normal University, Changsha, 410008, China
| | - Dengjie Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Adolphus Osei Nyarko
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Ai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Tang YJ, Xu H, Hughes NW, Kim SH, Ruiz P, Shuldiner EG, Lopez SS, Hebert JD, Karmakar S, Andrejka L, Dolcen DN, Boross G, Chu P, Detrick C, Pierce S, Ashkin EL, Greenleaf WJ, Voss AK, Thomas T, van de Rijn M, Petrov DA, Winslow MM. Functional mapping of epigenetic regulators uncovers coordinated tumor suppression by the HBO1 and MLL1 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.607671. [PMID: 39229041 PMCID: PMC11370414 DOI: 10.1101/2024.08.19.607671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Epigenetic dysregulation is widespread in cancer. However, the specific epigenetic regulators and the processes they control to drive cancer phenotypes are poorly understood. Here, we employed a novel, scalable and high-throughput in vivo method to perform iterative functional screens of over 250 epigenetic regulatory genes within autochthonous oncogenic KRAS-driven lung tumors. We identified multiple novel epigenetic tumor suppressor and tumor dependency genes. We show that a specific HBO1 complex and the MLL1 complex are among the most impactful tumor suppressive epigenetic regulators in lung. The histone modifications generated by the HBO1 complex are frequently absent or reduced in human lung adenocarcinomas. The HBO1 and MLL1 complexes regulate chromatin accessibility of shared genomic regions, lineage fidelity and the expression of canonical tumor suppressor genes. The HBO1 and MLL1 complexes are epistatic during lung tumorigenesis, and their functional correlation is conserved in human cancer cell lines. Together, these results demonstrate the value of quantitative methods to generate a phenotypic roadmap of epigenetic regulatory genes in tumorigenesis in vivo .
Collapse
|
21
|
Chen F, Zhang Y, Shen L, Creighton CJ. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival. Nat Commun 2024; 15:6775. [PMID: 39117669 PMCID: PMC11310301 DOI: 10.1038/s41467-024-51276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variation heavily influences the molecular landscape of cancer, in part by impacting DNA methylation-mediated transcriptional regulation. Here, using multi-omic datasets involving >2400 pediatric brain and central nervous system tumors of diverse histologies from the Children's Brain Tumor Network, we report hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of somatic structural variant (SV) breakpoints is recurrently associated with altered expression or DNA methylation, respectively, including tumor suppressor genes ATRX and CDKN2A. Altered DNA methylation near enhancers associates with nearby somatic SV breakpoints, including MYC and MYCN. A subset of genes with SV-CGI methylation associations also have expression associations with patient survival, including BCOR, TERT, RCOR2, and PDLIM4. DNA methylation changes in recurrent or progressive tumors compared to the initial tumor within the same patient can predict survival in pediatric and adult cancers. Our comprehensive and pan-histology genomic analyses reveal mechanisms of noncoding alterations impacting cancer genes.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Valous NA, Popp F, Zörnig I, Jäger D, Charoentong P. Graph machine learning for integrated multi-omics analysis. Br J Cancer 2024; 131:205-211. [PMID: 38729996 PMCID: PMC11263675 DOI: 10.1038/s41416-024-02706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Multi-omics experiments at bulk or single-cell resolution facilitate the discovery of hypothesis-generating biomarkers for predicting response to therapy, as well as aid in uncovering mechanistic insights into cellular and microenvironmental processes. Many methods for data integration have been developed for the identification of key elements that explain or predict disease risk or other biological outcomes. The heterogeneous graph representation of multi-omics data provides an advantage for discerning patterns suitable for predictive/exploratory analysis, thus permitting the modeling of complex relationships. Graph-based approaches-including graph neural networks-potentially offer a reliable methodological toolset that can provide a tangible alternative to scientists and clinicians that seek ideas and implementation strategies in the integrated analysis of their omics sets for biomedical research. Graph-based workflows continue to push the limits of the technological envelope, and this perspective provides a focused literature review of research articles in which graph machine learning is utilized for integrated multi-omics data analyses, with several examples that demonstrate the effectiveness of graph-based approaches.
Collapse
Affiliation(s)
- Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Ferdinand Popp
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Inka Zörnig
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Dirk Jäger
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Pornpimol Charoentong
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
24
|
Xing P, Hao H, Chen J, Qiao X, Song T, Yang X, Weng K, Hou Y, Chen J, Wang Z, Di J, Jiang B, Xing J, Su X. Integrated profiling identifies DXS253E as a potential prognostic marker in colorectal cancer. Cancer Cell Int 2024; 24:213. [PMID: 38890691 PMCID: PMC11186088 DOI: 10.1186/s12935-024-03403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that DXS253E is critical for cancer development and progression, but the function and potential mechanism of DXS253E in colorectal cancer (CRC) remain largely unknown. In this study, we evaluated the clinical significance and explored the underlying mechanism of DXS253E in CRC. METHODS DXS253E expression in cancer tissues was investigated using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Kaplan-Meier plot was used to assess the prognosis of DXS253E. The cBioPortal, MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were employed to analyze the mutation profile, methylation, and immune infiltration associated with DXS253E. The biological functions of DXS253E in CRC cells were determined by CCK-8 assay, plate cloning assay, Transwell assay, flow cytometry, lactate assay, western blot, and qRT-PCR. RESULTS DXS253E was upregulated in CRC tissues and high DXS253E expression levels were correlated with poor survival in CRC patients. Our bioinformatics analyses showed that high DXS253E gene methylation levels were associated with the favorable prognosis of CRC patients. Furthermore, DXS253E levels were linked to the expression levels of several immunomodulatory genes and an abundance of immune cells. Mechanistically, the overexpression of DXS253E enhanced proliferation, migration, invasion, and the aerobic glycolysis of CRC cells through the AKT/mTOR pathway. CONCLUSIONS We demonstrated that DXS253E functions as a potential role in CRC progression and may serve as an indicator of outcomes and a therapeutic target for regulating the AKT/mTOR pathway in CRC.
Collapse
Affiliation(s)
- Pu Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hao Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jiangbo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaowen Qiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tongkun Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xinying Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Kai Weng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yifan Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jie Chen
- Peking University Health Science Center, Beijing, 100191, China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jiadi Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Xiangqian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
25
|
Tuminello S, Ashebir YA, Schroff C, Ramaswami S, Durmus N, Chen Y, Snuderl M, Shao Y, Reibman J, Arslan AA. Genome-wide DNA methylation profiles and breast cancer among World Trade Center survivors. Environ Epidemiol 2024; 8:e313. [PMID: 38841706 PMCID: PMC11152787 DOI: 10.1097/ee9.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Increased incidence of cancer has been reported among World Trade Center (WTC)-exposed persons. Aberrant DNA methylation is a hallmark of cancer development. To date, only a few small studies have investigated the relationship between WTC exposure and DNA methylation. The main objective of this study was to assess the DNA methylation profiles of WTC-exposed community members who remained cancer free and those who developed breast cancer. Methods WTC-exposed women were selected from the WTC Environmental Health Center clinic, with peripheral blood collected during routine clinical monitoring visits. The reference group was selected from the NYU Women's Health Study, a prospective cohort study with blood samples collected before 9 November 2001. The Infinium MethylationEPIC array was used for global DNA methylation profiling, with adjustments for cell type composition and other confounders. Annotated probes were used for biological pathway and network analysis. Results A total of 64 WTC-exposed (32 cancer free and 32 with breast cancer) and 32 WTC-unexposed (16 cancer free and 16 with prediagnostic breast cancer) participants were included. Hypermethylated cytosine-phosphate-guanine probe sites (defined as β > 0.8) were more common among WTC-exposed versus unexposed participants (14.3% vs. 4.5%, respectively, among the top 5000 cytosine-phosphate-guanine sites). Cancer-related pathways (e.g., human papillomavirus infection, cGMP-PKG) were overrepresented in WTC-exposed groups (breast cancer patients and cancer-free subjects). Compared to the unexposed breast cancer patients, 47 epigenetically dysregulated genes were identified among WTC-exposed breast cancers. These genes formed a network, including Wnt/β-catenin signaling genes WNT4 and TCF7L2, and dysregulation of these genes contributes to cancer immune evasion. Conclusion WTC exposure likely impacts DNA methylation and may predispose exposed individuals toward cancer development, possibly through an immune-mediated mechanism.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Yibeltal Arega Ashebir
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Chanel Schroff
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Sitharam Ramaswami
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York City, New York
| |
Collapse
|
26
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
27
|
Sun M, Xu B, Chen C, Zhu Y, Li X, Chen K. Tissue of origin prediction for cancer of unknown primary using a targeted methylation sequencing panel. Clin Epigenetics 2024; 16:25. [PMID: 38336771 PMCID: PMC10854167 DOI: 10.1186/s13148-024-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
RATIONALE Cancer of unknown primary (CUP) is a group of rare malignancies with poor prognosis and unidentifiable tissue-of-origin. Distinct DNA methylation patterns in different tissues and cancer types enable the identification of the tissue of origin in CUP patients, which could help risk assessment and guide site-directed therapy. METHODS Using genome-wide DNA methylation profile datasets from The Cancer Genome Atlas (TCGA) and machine learning methods, we developed a 200-CpG methylation feature classifier for CUP tissue of origin prediction (MFCUP). MFCUP was further validated with public-available methylation array data of 2977 specimens and targeted methylation sequencing of 78 Formalin-fixed paraffin-embedded (FFPE) samples from a single center. RESULTS MFCUP achieved an accuracy of 97.2% in a validation cohort (n = 5923) representing 25 cancer types. When applied to an Infinium 450 K array dataset (n = 1052) and an Infinium EPIC (850 K) array dataset (n = 1925), MFCUP achieved an overall accuracy of 93.4% and 84.8%, respectively. Based on MFCUP, we established a targeted bisulfite sequencing panel and validated it with FFPE sections from 78 patients of 20 cancer types. This methylation sequencing panel correctly identified tissue of origin in 88.5% (69/78) of samples. We also found that the methylation levels of specific CpGs can distinguish one cancer type from others, indicating their potential as biomarkers for cancer diagnosis and screening. CONCLUSION Our methylation-based cancer classifier and targeted methylation sequencing panel can predict tissue of origin in diverse cancer types with high accuracy.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Xu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Chao Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youjie Zhu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Xiaomo Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China.
| | - Kuisheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|