1
|
Alikarami F, Xie HM, Riedel SS, Goodrow HT, Barrett DR, Mahdavi L, Lenard A, Chen C, Yamauchi T, Danis E, Cao Z, Tran VL, Jung MM, Li Y, Huang H, Shi J, Tan K, Teachey DT, Bresnick EH, Neff TA, Bernt KM. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Blood 2025; 145:2179-2195. [PMID: 39841459 DOI: 10.1182/blood.2024025761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3-driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.
Collapse
MESH Headings
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Animals
- Mice
- Doxorubicin/pharmacology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2/metabolism
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hongbo M Xie
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Simone S Riedel
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haley T Goodrow
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Declan R Barrett
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Mahdavi
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexandra Lenard
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Experimental Hematology, State Key Laboratory, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Taylor Yamauchi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhendong Cao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Junwei Shi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T Teachey
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tobias A Neff
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathrin M Bernt
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Mumme HL, Huang C, Ohlstrom D, Bakhtiari M, Raikar SS, DeRyckere D, Qayed M, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin SS, Bhasin M. Identification of leukemia-enriched signature through the development of a comprehensive pediatric single-cell atlas. Nat Commun 2025; 16:4114. [PMID: 40316535 PMCID: PMC12048633 DOI: 10.1038/s41467-025-59362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
Single-cell transcriptome profiling enables unparalleled characterization of the heterogeneous microenvironment of pediatric leukemias. To facilitate comparative analyses and generate pediatric leukemia signatures, we collect, process, and annotate single-cell data comprising over 540,000 cells from 159 different pediatric acute leukemia (myeloid, lymphoid, mixed phenotype lineages) and healthy bone marrow (BM) samples, profiled in our lab and curated from publicly available studies. The analysis identifies a leukemia-enriched signature of nine genes with over-expression in leukemic blast compared to healthy BM cells. This signature is also consistently over-expressed in leukemia samples compared to normal BM in bulk RNA-seq datasets (over 2000 samples). Outcome-based analysis on diagnosis samples using measurable residual disease (MRD) status depicts a significant association of oncogene-induced senescence and g-protein activation pathways with MRD positivity. MRD positivity across pediatric leukemias is also correlated with significant depletion of CD8+ and CD4+ naïve T-cells and M1-macrophages at diagnosis. To enable easy access to this comprehensive pediatric leukemia single-cell atlas, we develop the Pediatric Single-cell Cancer Atlas (PedSCAtlas, https://bhasinlab.bmi.emory.edu/PediatricSCAtlas/ ). The atlas allows for quick exploration of single-cell data based on genes, cell type composition, and clinical outcomes to understand the cellular landscape of pediatric leukemias.
Collapse
Affiliation(s)
- Hope L Mumme
- Department of Biomedical Informatics, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Chenbin Huang
- Department of Biomedical Informatics, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Denis Ohlstrom
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Muna Qayed
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Sharon M Castellino
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Daniel S Wechsler
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Swati S Bhasin
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, 2220 N Druid Hills Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
3
|
Boxer E, Feigin N, Tschernichovsky R, Darnell NG, Greenwald AR, Hoefflin R, Kovarsky D, Simkin D, Turgeman S, Zhang L, Tirosh I. Emerging clinical applications of single-cell RNA sequencing in oncology. Nat Rev Clin Oncol 2025; 22:315-326. [PMID: 40021788 DOI: 10.1038/s41571-025-01003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of complex tissues both in health and in disease. Over the past decade, scRNA-seq has been applied to tumour samples obtained from patients with cancer in hundreds of studies, thereby advancing the view that each tumour is a complex ecosystem and uncovering the diverse states of both cancer cells and the tumour microenvironment. Such studies have primarily investigated and provided insights into the basic biology of cancer, although considerable research interest exists in leveraging these findings towards clinical applications. In this Review, we summarize the available data from scRNA-seq studies investigating samples from patients with cancer with a particular focus on findings that are of potential clinical relevance. We highlight four main research objectives of scRNA-seq studies and describe some of the most relevant findings towards such goals. We also describe the limitations of scRNA-seq, as well as future approaches in this field that are anticipated to further advance clinical applicability.
Collapse
Affiliation(s)
- Emily Boxer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nisan Feigin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roi Tschernichovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa R Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Kovarsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Simkin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Turgeman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Xie Y, Jing Z, Pan H, Xu X, Fang Q. Redefining the high variable genes by optimized LOESS regression with positive ratio. BMC Bioinformatics 2025; 26:104. [PMID: 40234751 PMCID: PMC12001687 DOI: 10.1186/s12859-025-06112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Single-cell RNA sequencing allows for the exploration of transcriptomic features at the individual cell level, but the high dimensionality and sparsity of the data pose substantial challenges for downstream analysis. Feature selection, therefore, is a critical step to reduce dimensionality and enhance interpretability. RESULTS We developed a robust feature selection algorithm that leverages optimized locally estimated scatterplot smoothing regression (LOESS) to precisely capture the relationship between gene average expression level and positive ratio while minimizing overfitting. Our evaluations showed that our algorithm consistently outperforms eight leading feature selection methods across three benchmark criteria and helps improve downstream analysis, thus offering a significant improvement in gene subset selection. CONCLUSIONS By preserving key biological information through feature selection, GLP provides informative features to enhance the accuracy and effectiveness of downstream analyses.
Collapse
Affiliation(s)
- Yue Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Zehua Jing
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | | | - Xun Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
| | - Qi Fang
- BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
5
|
Bubb QR, Balood M, Seir GE, Swartzrock L, Haslett E, Ho K, Xu P, Wiltz SG, Sotillo E, Gruber TA, Richards RM, Mackall CL, Czechowicz A. Development of multivalent CAR T cells as dual immunotherapy and conditioning agents. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200944. [PMID: 40034967 PMCID: PMC11872492 DOI: 10.1016/j.omton.2025.200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only definitive cure for pediatric acute myeloid leukemia (AML). Despite adjustments in HSCT protocols and improvements in supportive care, 30% of high-risk patients who receive HSCT as part of their therapy still experience disease relapse with high transplant-related mortality. Relapsed AML has a dismal prognosis, and novel therapies are needed. To improve upon the status quo, HSCT would more effectively eliminate relapse-initiating leukemic cells and be delivered with safer, non-genotoxic conditioning. Here, we investigate hematopoietic cytokine receptors (HCRs) and identify that KIT, MPL, and FLT3 are collectively highly expressed in virtually all pediatric AML samples studied. Further, we establish proof-of-concept of a first-in-class chimeric antigen receptor (CAR) T cell that enables simultaneous targeting of KIT, MPL, and FLT3 through a single receptor, which we term the extracellularly linked concatemeric trivalent cytokine (ELECTRIC) CAR. ELECTRIC CARs exhibit potent cytotoxicity against normal and malignant hematopoietic cells in vitro and display anti-HCR activity in a murine xenograft model. We propose that the ELECTRIC system can be the foundation to developing a non-genotoxic, anti-leukemic conditioning regimen to enable safer, more durable efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Quenton Rashawn Bubb
- Stem Cell Biology and Regenerative Medicine Graduate Program, Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Balood
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabe Eduardo Seir
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leah Swartzrock
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ethan Haslett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Ho
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saida G. Wiltz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanja A. Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M. Richards
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Crystal L. Mackall
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnieszka Czechowicz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Giguelay AM, Ludwig LS. The chromatin accessibility landscape of pediatric AML. Blood 2025; 145:1109-1111. [PMID: 40080008 DOI: 10.1182/blood.2024027585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Affiliation(s)
- Ambre M Giguelay
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine
| |
Collapse
|
7
|
Cui B, Ai L, Lei M, Duan Y, Tang C, Zhang J, Gao Y, Li X, Zhu C, Zhang Y, Zhu X, Isobe T, Yang W, Göttgens B, Zhu P. Single-cell epigenetic and clonal analysis decodes disease progression in pediatric acute myeloid leukemia. Blood 2025; 145:1211-1224. [PMID: 39661948 PMCID: PMC11923433 DOI: 10.1182/blood.2024025618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia (pAML) is a clonal disease with recurrent genetic alterations that affect epigenetic states. However, the implications of epigenetic dysregulation in disease progression remain unclear. Here, we interrogated single-cell and clonal level chromatin accessibility of bone marrow samples from 28 patients with pAML representing multiple subtypes using mitochondrial single-cell assay for transposase-accessible chromatin with sequencing, which revealed distinct differentiation hierarchies and abnormal chromatin accessibility in a subtype-specific manner. Innate immune signaling was commonly enhanced across subtypes and related to improved advantage of clonal competition and unfavorable prognosis, with further reinforcement in a relapse-associated leukemia stem cell-like population. We identified a panel of 31 innate immunity-related genes to improve the risk classification of patients with pAML. By comparing paired diagnosis and postchemotherapy relapse samples, we showed that primitive cells significantly reduced major histocompatibility complex class II signaling, suggesting an immune evasion mechanism to facilitate their expansion at relapse. Key regulators orchestrating cell cycle dysregulation were identified to contribute to pAML relapse in drug-resistant clones. Our work establishes the single-cell chromatin accessibility landscape at clonal resolution and reveals the critical involvement of epigenetic disruption, offering insights into classification and targeted therapies of patients with pAML.
Collapse
Affiliation(s)
- Boyu Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghui Lei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yongjuan Duan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tomoya Isobe
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Lecornec N, Duchmann M, Itzykson R. Single-cell sequencing applications in acute myeloid leukemia. Leuk Lymphoma 2025; 66:175-189. [PMID: 39496597 DOI: 10.1080/10428194.2024.2422833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Neoplasm, Residual/genetics
- Neoplasm, Residual/diagnosis
- Biomarkers, Tumor/genetics
- High-Throughput Nucleotide Sequencing/methods
- Clonal Evolution
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Computational Biology/methods
- Prognosis
Collapse
Affiliation(s)
- Nicolas Lecornec
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
9
|
Umeda M, Hiltenbrand R, Michmerhuizen NL, Barajas JM, Thomas ME, Arthur B, Walsh MP, Song G, Ma J, Westover T, Kumar A, Pölönen P, Mecucci C, Di Giacomo D, Locatelli F, Masetti R, Bertuccio SN, Pigazzi M, Pruett-Miller SM, Pounds S, Rubnitz J, Inaba H, Papadopoulos KP, Wick MJ, Iacobucci I, Mullighan CG, Klco JM. Fusion oncoproteins and cooperating mutations define disease phenotypes in NUP98-rearranged leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25320683. [PMID: 39974131 PMCID: PMC11838931 DOI: 10.1101/2025.01.21.25320683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Leukemias with NUP98 rearrangements exhibit heterogeneous phenotypes correlated to fusion partners, whereas the mechanism responsible for this heterogeneity is poorly understood. Through genome-wide mutational and transcriptional analyses of 177 NUP98-rearranged leukemias, we show that cooperating alterations are associated with differentiation status even among leukemias sharing the same NUP98 fusions, such as NUP98::KDM5A acute megakaryocytic leukemia with RB1 loss or T-cell acute lymphoblastic leukemia with NOTCH1 mutations. CUT&RUN profiling reveals that NUP98 fusion oncoproteins directly regulate differentiation-related genes, with binding patterns also influenced by differentiation stage. Using in vitro models, we show RB1 loss cooperates with NUP98::KDM5A by blocking terminal differentiation toward platelets and expanding megakaryocyte-like cells, whereas WT1 frameshifts skew differentiation toward dormant lympho-myeloid primed progenitor cells and cycling granulocyte-monocyte progenitor cells. NUP98::KDM5A models with RB1 or WT1 alterations have different sensitivities to menin inhibition, suggesting cellular differentiation stage-specific resistant mechanism against menin inhibitors with clinical implications for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | | | - Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Bright Arthur
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Michael P Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Amit Kumar
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Petri Pölönen
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Cristina Mecucci
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Martina Pigazzi
- Department of Women’s and Children’s Health, Onco-hematology lab and clinic, University of Padova, Padova, Italy
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, US
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | | | - Michael J. Wick
- XenoSTART/ The START Center for Cancer Research, San Antonio, TX, US
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| |
Collapse
|
10
|
Laisné M, Lupien M, Vallot C. Epigenomic heterogeneity as a source of tumour evolution. Nat Rev Cancer 2025; 25:7-26. [PMID: 39414948 DOI: 10.1038/s41568-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
In the past decade, remarkable progress in cancer medicine has been achieved by the development of treatments that target DNA sequence variants. However, a purely genetic approach to treatment selection is hampered by the fact that diverse cell states can emerge from the same genotype. In multicellular organisms, cell-state heterogeneity is driven by epigenetic processes that regulate DNA-based functions such as transcription; disruption of these processes is a hallmark of cancer that enables the emergence of defective cell states. Advances in single-cell technologies have unlocked our ability to quantify the epigenomic heterogeneity of tumours and understand its mechanisms, thereby transforming our appreciation of how epigenomic changes drive cancer evolution. This Review explores the idea that epigenomic heterogeneity and plasticity act as a reservoir of cell states and therefore as a source of tumour evolution. Best practices to quantify epigenomic heterogeneity and explore its various causes and consequences are discussed, including epigenomic reprogramming, stochastic changes and lasting memory. The design of new therapeutic approaches to restrict epigenomic heterogeneity, with the long-term objective of limiting cancer development and progression, is also addressed.
Collapse
Affiliation(s)
- Marthe Laisné
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontorio, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontorio, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontorio, Canada.
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
11
|
Fleming TJ, Antoszewski M, Lambo S, Gundry MC, Piussi R, Wahlster L, Shah S, Reed FE, Dong KD, Paulo JA, Gygi SP, Mimoso C, Goldman SR, Adelman K, Perry JA, Pikman Y, Stegmaier K, Barrachina MN, Machlus KR, Hovestadt V, Arruda A, Minden MD, Voit RA, Sankaran VG. CEBPA repression by MECOM blocks differentiation to drive aggressive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630680. [PMID: 39803492 PMCID: PMC11722404 DOI: 10.1101/2024.12.30.630680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown. To address existing experimental limitations, we engineered and applied targeted protein degradation with functional genomic readouts to demonstrate that MECOM promotes malignant stem cell-like states by directly repressing pro-differentiation gene regulatory programs. Remarkably and unexpectedly, a single node in this network, a MECOM-bound cis-regulatory element located 42 kb downstream of the myeloid differentiation regulator CEBPA, is both necessary and sufficient for maintaining MECOM-driven leukemias. Importantly, targeted activation of this regulatory element promotes differentiation of these aggressive AMLs and reduces leukemia burden in vivo, suggesting a broadly applicable differentiation-based approach for improving therapy.
Collapse
Affiliation(s)
- Travis J. Fleming
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Sander Lambo
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Michael C. Gundry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Riccardo Piussi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sanjana Shah
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona E. Reed
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin D. Dong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer A. Perry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yana Pikman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria N. Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Volker Hovestadt
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Present Address: UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02142, USA
- Lead contact
| |
Collapse
|
12
|
Bakhtiari M, Jordan SC, Mumme HL, Sharma R, Shanmugam M, Bhasin SS, Bhasin M. ARMH1 is a novel marker associated with poor pediatric AML outcomes that affect the fatty acid synthesis and cell cycle pathways. Front Oncol 2024; 14:1445173. [PMID: 39703843 PMCID: PMC11655347 DOI: 10.3389/fonc.2024.1445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite remarkable progress in Pediatric Acute Myeloid Leukemia (pAML) treatments, the relapsed disease remains difficult to treat, making it pertinent to identify novel biomarkers of prognostic/therapeutic significance. Material and methods Bone marrow samples from 21 pAML patients were analyzed using single cell RNA sequencing, functional assays with ARMH1 knockdown and overexpression were performed in leukemia cell lines to evaluate impact on proliferation and migration, and chemotherapy sensitivity. Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting proteins were studied using co-immunoprecipitation. Bulk RNA-seq was performed on ARMH1knockdown and over expressing cell lines to evaluate the pathways and networks impacted by ARMH1. Results Our data shows that ARMH1, a novel cancer-associated gene, is highly expressed in the malignant blast cells of multiple pediatric hematologic malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1 expression is significantly elevated in blast cells of patients who relapsed or have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv (16)). ARMH1 expression is also significantly correlated with the pediatric leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes. Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines significantly impacted cell proliferation and migration. The RNA-sequencing analysis on multiple ARMH1 knockdown and overexpressing cell lines established an association with mitochondrial fatty acid synthesis and cell cycle pathways.The investigation of the mitochondrial matrix shows that pharmacological inhibition of a key enzyme in fatty acid synthesis regulation, CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a significant reduction in CPT1A and ATP production as well as Oxygen Consumption Rate. Our data indicates that downregulating ARMH1 impacts cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2. Further, we also established that ARMH1 is a key physical interactant of EZH2, associated with multiple cancers. Conclusion Our findings underscore further evaluation of ARMH1 as a potential candidate for targeted therapies and stratification of aggressive pAML to improve outcomes.
Collapse
Affiliation(s)
- Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
| | - Sean C. Jordan
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Hope L. Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Richa Sharma
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024; 102:472-491. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. MLL oncoprotein levels influence leukemia lineage identities. Nat Commun 2024; 15:9341. [PMID: 39472576 PMCID: PMC11522475 DOI: 10.1038/s41467-024-53399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal translocations involving the mixed-lineage leukemia (MLL) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative MLL-rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose MLL oncoproteins promote lineage-switching events through dynamic chromatin binding at lineage-specific target genes, and may support resistance to menin inhibitors through similar changes in chromatin occupancy.
Collapse
Affiliation(s)
- Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Melodie Duran
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Weifang Wu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Danielle Kirkey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joanna S Yi
- Pediatric Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Soheil Meshinchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jay F Sarthy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Ahmed N, Cavattoni I, Villiers W, Cugno C, Deola S, Mifsud B. Multi-omic analysis of longitudinal acute myeloid leukemia patient samples reveals potential prognostic markers linked to disease progression. Front Genet 2024; 15:1442539. [PMID: 39399221 PMCID: PMC11466779 DOI: 10.3389/fgene.2024.1442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Relapse remains a determinant of treatment failure and contributes significantly to mortality in acute myeloid leukemia (AML) patients. Despite efforts to understand AML progression and relapse mechanisms, findings on acquired gene mutations in relapse vary, suggesting inherent genetic heterogeneity and emphasizing the role of epigenetic modifications. We conducted a multi-omic analysis using Omni-C, ATAC-seq, and RNA-seq on longitudinal samples from two adult AML patients at diagnosis and relapse. Herein, we characterized genetic and epigenetic changes in AML progression to elucidate the underlying mechanisms of relapse. Differential interaction analysis showed significant 3D chromatin landscape reorganization between relapse and diagnosis samples. Comparing global open chromatin profiles revealed that relapse samples had significantly fewer accessible chromatin regions than diagnosis samples. In addition, we discovered that relapse-related upregulation was achieved either by forming new active enhancer contacts or by losing interactions with poised enhancers/potential silencers. Altogether, our study highlights the impact of genetic and epigenetic changes on AML progression, underlining the importance of multi-omic approaches in understanding disease relapse mechanisms and guiding potential therapeutic interventions.
Collapse
Affiliation(s)
- Nisar Ahmed
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
| | - Irene Cavattoni
- Hematology and Bone Marrow Transplant Unit, Ospedale Centrale Bolzano, Bolzano, Italy
| | - William Villiers
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Sara Deola
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| |
Collapse
|
16
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
17
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. KMT2A oncoproteins induce epigenetic resistance to targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573681. [PMID: 38234854 PMCID: PMC10793413 DOI: 10.1101/2023.12.29.573681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Chromosomal translocations involving the Lysine-Methyl-Transferase-2A ( KMT2A ) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative KMT2A -rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose KMT2A oncoproteins promote lineage-switching events through dynamic chromatin binding and can induce epigenetic lesions, marked by ENL, that support resistance to targeted therapies.
Collapse
|
18
|
Mercher T, Schwaller J. From hypoxia single-cell gene signatures to HIF targeting of AML leukemic stem cells. Hemasphere 2024; 8:e59. [PMID: 38560647 PMCID: PMC10979755 DOI: 10.1002/hem3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB)University of BaselBaselSwitzerland
| |
Collapse
|
19
|
Waclawiczek A, Leppä A, Renders S, Trumpp A. An arms-race against resistance: leukemic stem cells and lineage plasticity. Mol Oncol 2024; 18:475-478. [PMID: 38375990 PMCID: PMC10920078 DOI: 10.1002/1878-0261.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Acute myeloid leukemia (AML) therapy is undergoing rapid development, but primary and acquired resistance to therapy complicates the prospect of a durable cure. Recent functional and single-cell multi-omics approaches have greatly expanded our knowledge of the diversity of lineage trajectories in AML settings. AML cells range from undifferentiated stem-like cells to more differentiated myeloid or megakaryocyte/erythroid cells. Current clinically relevant drugs predominantly target the myeloid progenitor lineage, while monocyte- or stem cell-like states can evade current AML treatment and may be targeted in the future with lineage-specific inhibitors. The extent of aberrant lineage plasticity upon therapeutic pressure in AML cells in conjunction with hijacking of normal differentiation pathways is still a poorly understood topic. Insights into the mechanisms of lineage plasticity of AML stem cells could identify both therapy-specific and cross-drug resistance pathways and reveal novel strategies to overcome them.
Collapse
Affiliation(s)
- Alexander Waclawiczek
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ) and DKFZ‐ZMBH AllianceHeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)Germany
| | - Aino‐Maija Leppä
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ) and DKFZ‐ZMBH AllianceHeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)Germany
| | - Simon Renders
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ) and DKFZ‐ZMBH AllianceHeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)Germany
- Department of Internal Medicine V, Hematology, Oncology and RheumatologyHeidelberg University HospitalGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ) and DKFZ‐ZMBH AllianceHeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)Germany
- German Cancer Consortium (DKTK)HeidelbergGermany
| |
Collapse
|