1
|
Mayorca-Torres D, León-Salas AJ, Peluffo-Ordoñez DH. Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging. Med Biol Eng Comput 2025:10.1007/s11517-024-03264-z. [PMID: 39779645 DOI: 10.1007/s11517-024-03264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to analyze computational techniques in ECG imaging (ECGI) reconstruction, focusing on dataset identification, problem-solving, and feature extraction. We employed a PRISMA approach to review studies from Scopus and Web of Science, applying Cochrane principles to assess risk of bias. The selection was limited to English peer-reviewed papers published from 2010 to 2023, excluding studies that lacked computational technique descriptions. From 99 reviewed papers, trends show a preference for traditional methods like the boundary element and Tikhonov methods, alongside a rising use of advanced technologies including hybrid techniques and deep learning. These advancements have enhanced cardiac diagnosis and treatment precision. Our findings underscore the need for robust data utilization and innovative computational integration in ECGI, highlighting promising areas for future research and advances. This shift toward tailored cardiac care suggests significant progress in diagnostic and treatment methods.
Collapse
Affiliation(s)
- Dagoberto Mayorca-Torres
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain.
- Faculty of Engineering, Universidad Mariana, Cl 18 34 - 104, Pasto, 52001, Colombia.
| | - Alejandro J León-Salas
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
| | - Diego H Peluffo-Ordoñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520001, Colombia
- College of Computing, Mohammed VI Polytechnic University, Lot 660, Ben Guerir, 43150, Morocco
- SDAS Research Group, Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Serrano RR, Velasco‐Bosom S, Dominguez‐Alfaro A, Picchio ML, Mantione D, Mecerreyes D, Malliaras GG. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301176. [PMID: 37203308 PMCID: PMC11251564 DOI: 10.1002/advs.202301176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.
Collapse
Affiliation(s)
| | | | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Daniele Mantione
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | | |
Collapse
|
3
|
Bergquist JA, Zenger B, Rupp LC, Busatto A, Tate J, Brooks DH, Narayan A, MacLeod RS. Uncertainty quantification of the effect of cardiac position variability in the inverse problem of electrocardiographic imaging. Physiol Meas 2023; 44:105003. [PMID: 37734339 DOI: 10.1088/1361-6579/acfc32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Objective.Electrocardiographic imaging (ECGI) is a functional imaging modality that consists of two related problems, the forward problem of reconstructing body surface electrical signals given cardiac bioelectric activity, and the inverse problem of reconstructing cardiac bioelectric activity given measured body surface signals. ECGI relies on a model for how the heart generates bioelectric signals which is subject to variability in inputs. The study of how uncertainty in model inputs affects the model output is known as uncertainty quantification (UQ). This study establishes develops, and characterizes the application of UQ to ECGI.Approach.We establish two formulations for applying UQ to ECGI: a polynomial chaos expansion (PCE) based parametric UQ formulation (PCE-UQ formulation), and a novel UQ-aware inverse formulation which leverages our previously established 'joint-inverse' formulation (UQ joint-inverse formulation). We apply these to evaluate the effect of uncertainty in the heart position on the ECGI solutions across a range of ECGI datasets.Main results.We demonstrated the ability of our UQ-ECGI formulations to characterize the effect of parameter uncertainty on the ECGI inverse problem. We found that while the PCE-UQ inverse solution provided more complex outputs such as sensitivities and standard deviation, the UQ joint-inverse solution provided a more interpretable output in the form of a single ECGI solution. We find that between these two methods we are able to assess a wide range of effects that heart position variability has on the ECGI solution.Significance.This study, for the first time, characterizes in detail the application of UQ to the ECGI inverse problem. We demonstrated how UQ can provide insight into the behavior of ECGI using variability in cardiac position as a test case. This study lays the groundwork for future development of UQ-ECGI studies, as well as future development of ECGI formulations which are robust to input parameter variability.
Collapse
Affiliation(s)
- Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, United States of America
- Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America
| | - Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, United States of America
- Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America
- School of Medicine, University of Utah, SLC, UT, United States of America
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, United States of America
- Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America
| | - Anna Busatto
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, United States of America
- Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America
| | - Jess Tate
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, United States of America
| | - Akil Narayan
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Department of Mathematics, University of Utah, SLC, UT, United States of America
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC, UT, United States of America
- Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America
| |
Collapse
|
4
|
Marashly Q, Najjar SN, Hahn J, Rector GJ, Khawaja M, Chelu MG. Innovations in ventricular tachycardia ablation. J Interv Card Electrophysiol 2023; 66:1499-1518. [PMID: 35879516 DOI: 10.1007/s10840-022-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Catheter ablation of ventricular arrhythmias (VAs) has evolved significantly over the past decade and is currently a well-established therapeutic option. Technological advances and improved understanding of VA mechanisms have led to tremendous innovations in VA ablation. The purpose of this review article is to provide an overview of current innovations in VA ablation. Mapping techniques, such as ultra-high density mapping, isochronal late activation mapping, and ripple mapping, have provided improved arrhythmogenic substrate delineation and potential procedural success while limiting duration of ablation procedure and potential hemodynamic compromise. Besides, more advanced mapping and ablation techniques such as epicardial and intramyocardial ablation approaches have allowed operators to more precisely target arrhythmogenic substrate. Moreover, advances in alternate energy sources, such as electroporation, as well as stereotactic radiation therapy have been proposed to be effective and safe. New catheters, such as the lattice and the saline-enhanced radiofrequency catheters, have been designed to provide deeper and more durable tissue ablation lesions compared to conventional catheters. Contact force optimization and baseline impedance modulation are important tools to optimize VT radiofrequency ablation and improve procedural success. Furthermore, advances in cardiac imaging, specifically cardiac MRI, have great potential in identifying arrhythmogenic substrate and evaluating ablation success. Overall, VA ablation has undergone significant advances over the past years. Innovations in VA mapping techniques, alternate energy source, new catheters, and utilization of cardiac imaging have great potential to improve overall procedural safety, hemodynamic stability, and procedural success.
Collapse
Affiliation(s)
- Qussay Marashly
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Salim N Najjar
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Joshua Hahn
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Graham J Rector
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Muzamil Khawaja
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Mihail G Chelu
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA.
- Baylor St. Luke's Medical Center, Houston, USA.
- Texas Heart Institute, Houston, USA.
| |
Collapse
|
5
|
Bayer J, Hintermüller C, Blessberger H, Steinwender C. ECG Electrode Localization: 3D DS Camera System for Use in Diverse Clinical Environments. SENSORS (BASEL, SWITZERLAND) 2023; 23:5552. [PMID: 37420719 DOI: 10.3390/s23125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Models of the human body representing digital twins of patients have attracted increasing interest in clinical research for the delivery of personalized diagnoses and treatments to patients. For example, noninvasive cardiac imaging models are used to localize the origin of cardiac arrhythmias and myocardial infarctions. The precise knowledge of a few hundred electrocardiogram (ECG) electrode positions is essential for their diagnostic value. Smaller positional errors are obtained when extracting the sensor positions, along with the anatomical information, for example, from X-ray Computed Tomography (CT) slices. Alternatively, the amount of ionizing radiation the patient is exposed to can be reduced by manually pointing a magnetic digitizer probe one by one to each sensor. An experienced user requires at least 15 min. to perform a precise measurement. Therefore, a 3D depth-sensing camera system was developed that can be operated under adverse lighting conditions and limited space, as encountered in clinical settings. The camera was used to record the positions of 67 electrodes attached to a patient's chest. These deviate, on average, by 2.0 mm ±1.5 mm from manually placed markers on the individual 3D views. This demonstrates that the system provides reasonable positional precision even when operated within clinical environments.
Collapse
Affiliation(s)
- Jennifer Bayer
- Institute for Biomedical Mechatronics, Johannes Kepler University, 4040 Linz, Austria
| | | | - Hermann Blessberger
- Department of Cardiology, Kepler University Hospital, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| | - Clemens Steinwender
- Department of Cardiology, Kepler University Hospital, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
6
|
Miao L, Guo X, Sun G, Bai Y, Sun Y, Li Z. Effect of different alcohol consumption levels on the left atrial size: A cross-sectional study in rural China. Anatol J Cardiol 2022; 26:29-36. [PMID: 35191383 PMCID: PMC8878945 DOI: 10.5152/anatoljcardiol.2021.24850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVE Previous studies have investigated the relationship between alcohol and ventricular structure; however, few studies have evaluated the relation between alcohol consumption and the atrium size. In this study, we aimed to test the association between alcohol consumption and left atrium (LA) size in the general population. METHODS A population-based sample of 10,211 subjects aged ≥35 years and free from hypertension at baseline were followed from January 2012 to August 2013. Left atrial enlargement (LAE) was defined as the ratio of LA diameter to body surface area exceeding 2.4 cm/m2 in both the sexes. Independent factors for LAE were estimated by multiple logistic regression analyses. RESULTS The study included 10,211 participants (4,751 men and 5,460 women). Left atrial diameter/body surface area (LAD/BSA) was higher in the moderate and heavy alcohol consumption groups than in the non-drinker group (non-drinker, 20.5±0.03 cm/m2; moderate, 20.8±0.09 cm/m2; and heavy, 20.6±0.06 cm/m2; p<0.001). Both the groups of moderate and heavy drinkers had a higher incidence of LAE than the non-drinker group (6.9% of non-drinkers, 9.9% of moderate drinkers, and 8.4% of heavy drinkers; p<0.001). After adjusting for related risk factors, multiple logistic regression analyses showed that moderate drinkers had an approximately 1.4-fold higher risk of LAE [odds ratio (OR): 1.387, 95% confidence interval (CI) 1.056-1.822, p=0.019] compared with the non-drinkers, and the heavy drinkers had an approximately 1.2-fold higher risk of LAE (OR: 1.229, 95% CI: 1.002-1.508, p=0.047) compared with that of the non-drinkers. CONCLUSION Both heavy and moderate drinkers had increased odds for LAE compared with participants with no alcohol consumption in the general population.
Collapse
Affiliation(s)
- Linlin Miao
- Department of Cardiology, the First Hospital of China Medical University; Shenyang-China
| | - Xiaofan Guo
- Department of Cardiology, the First Hospital of China Medical University; Shenyang-China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University; Shenyang-China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University; Shenyang-China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University; Shenyang-China
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University; Shenyang-China
| |
Collapse
|
7
|
Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. HEARTS 2021; 2:514-542. [PMID: 35665072 PMCID: PMC9164986 DOI: 10.3390/hearts2040040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Body surface potential mapping (BSPM) is a noninvasive modality to assess cardiac bioelectric activity with a rich history of practical applications for both research and clinical investigation. BSPM provides comprehensive acquisition of bioelectric signals across the entire thorax, allowing for more complex and extensive analysis than the standard electrocardiogram (ECG). Despite its advantages, BSPM is not a common clinical tool. BSPM does, however, serve as a valuable research tool and as an input for other modes of analysis such as electrocardiographic imaging and, more recently, machine learning and artificial intelligence. In this report, we examine contemporary uses of BSPM, and provide an assessment of its future prospects in both clinical and research environments. We assess the state of the art of BSPM implementations and explore modern applications of advanced modeling and statistical analysis of BSPM data. We predict that BSPM will continue to be a valuable research tool, and will find clinical utility at the intersection of computational modeling approaches and artificial intelligence.
Collapse
Affiliation(s)
- Jake Bergquist
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lindsay Rupp
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian Zenger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - James Brundage
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Busatto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rob S. MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Graham AJ, Schilling RJ. The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia. Arrhythm Electrophysiol Rev 2021; 10:211-217. [PMID: 34777827 PMCID: PMC8576495 DOI: 10.15420/aer.2021.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms. This calculation is achieved by solving the inverse problem and allows activation times to be calculated from a single beat. The technology was initially pioneered in the US using an experimental torso-shaped tank. Accuracy from studies in humans has varied. Early data was promising, with more recent work suggesting only moderate accuracy when reproducing cardiac activation. Despite these limitations, the system has been successfully used in pioneering work with non-invasive cardiac radioablation to treat ventricular arrhythmia. This suggests that the resolution may be sufficient for treatment of large target areas. Although untested in a well conducted clinical study it is likely that it would not be accurate enough to guide more discreet radiofrequency ablation.
Collapse
Affiliation(s)
- Adam J Graham
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | | |
Collapse
|
9
|
Bergquist JA, Good WW, Zenger B, Tate JD, Rupp LC, MacLeod RS. The electrocardiographic forward problem: A benchmark study. Comput Biol Med 2021; 134:104476. [PMID: 34051453 DOI: 10.1016/j.compbiomed.2021.104476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Electrocardiographic forward problems are crucial components for noninvasive electrocardiographic imaging (ECGI) that compute torso potentials from cardiac source measurements. Forward problems have few sources of error as they are physically well posed and supported by mature numerical and computational techniques. However, the residual errors reported from experimental validation studies between forward computed and measured torso signals remain surprisingly high. OBJECTIVE To test the hypothesis that incomplete cardiac source sampling, especially above the atrioventricular (AV) plane is a major contributor to forward solution errors. METHODS We used a modified Langendorff preparation suspended in a human-shaped electrolytic torso-tank and a novel pericardiac-cage recording array to thoroughly sample the cardiac potentials. With this carefully controlled experimental preparation, we minimized possible sources of error, including geometric error and torso inhomogeneities. We progressively removed recorded signals from above the atrioventricular plane to determine how the forward-computed torso-tank potentials were affected by incomplete source sampling. RESULTS We studied 240 beats total recorded from three different activation sequence types (sinus, and posterior and anterior left-ventricular free-wall pacing) in each of two experiments. With complete sampling by the cage electrodes, all correlation metrics between computed and measured torso-tank potentials were above 0.93 (maximum 0.99). The mean root-mean-squared error across all beat types was also low, less than or equal to 0.10 mV. A precipitous drop in forward solution accuracy was observed when we included only cage measurements below the AV plane. CONCLUSION First, our forward computed potentials using complete cardiac source measurements set a benchmark for similar studies. Second, this study validates the importance of complete cardiac source sampling above the AV plane to produce accurate forward computed torso potentials. Testing ECGI systems and techniques with these more complete and highly accurate datasets will improve inverse techniques and noninvasive detection of cardiac electrical abnormalities.
Collapse
Affiliation(s)
- Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Wilson W Good
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; School of Medicine, University of Utah, SLC, UT, USA.
| | - Jess D Tate
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; School of Medicine, University of Utah, SLC, UT, USA
| |
Collapse
|
10
|
Campbell T, Bennett RG, Kotake Y, Kumar S. Updates in Ventricular Tachycardia Ablation. Korean Circ J 2021; 51:15-42. [PMID: 33377327 PMCID: PMC7779814 DOI: 10.4070/kcj.2020.0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) due to recurrent ventricular tachycardia is an important clinical sequela in patients with structural heart disease. As a result, ventricular tachycardia (VT) has emerged as a major clinical and public health problem. The mechanism of VT is predominantly mediated by re-entry in the presence of arrhythmogenic substrate (scar), though focal mechanisms are also important. Catheter ablation for VT, when compared to standard medical therapy, has been shown to improve VT-free survival and burden of device therapies. Approaches to VT ablation are dependent on the underlying disease process, broadly classified into idiopathic (no structural heart disease) or structural heart disease (ischemic or non-ischemic heart disease). This update aims to review recent advances made for the treatment of VT ablation, with respect to current clinical trials, peri-procedure risk assessments, pre-procedural cardiac imaging, electro-anatomic mapping and advances in catheter and non-catheter based ablation techniques.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Zenger B, Good WW, Bergquist JA, Burton BM, Tate JD, Berkenbile L, Sharma V, MacLeod RS. Novel experimental model for studying the spatiotemporal electrical signature of acute myocardial ischemia: a translational platform. Physiol Meas 2020; 41:015002. [PMID: 31860892 DOI: 10.1088/1361-6579/ab64b9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Myocardial ischemia is one of the most common cardiovascular pathologies and can indicate many severe and life threatening diseases. Despite these risks, current electrocardiographic detection techniques for ischemia are mediocre at best, with reported sensitivity and specificity ranging from 50%-70% and 70%-90%, respectively. OBJECTIVE To improve this performance, we set out to develop an experimental preparation to induce, detect, and analyze bioelectric sources of myocardial ischemia and determine how these sources reflect changes in body-surface potential measurements. APPROACH We designed the experimental preparation with three important characteristics: (1) enable comprehensive and simultaneous high-resolution electrical recordings within the myocardial wall, on the heart surface, and on the torso surface; (2) develop techniques to visualize these recorded electrical signals in time and space; and (3) accurately and controllably simulate ischemic stress within the heart by modulating the supply of blood, the demand for perfusion, or a combination of both. MAIN RESULTS To achieve these goals we designed comprehensive system that includes (1) custom electrode arrays (2) signal acquisition and multiplexing units, (3) a surgical technique to place electrical recording and myocardial ischemic control equipment, and (4) an image based modeling pipeline to acquire, process, and visualize the results. With this setup, we are uniquely able to capture simultaneously and continuously the electrical signatures of acute myocardial ischemia within the heart, on the heart surface, and on the body surface. SIGNIFICANCE This novel experimental preparation enables investigation of the complex and dynamic nature of acute myocardial ischemia that should lead to new, clinically translatable results.
Collapse
Affiliation(s)
- Brian Zenger
- Scientific Computing and Imaging Institute, SLC, UT, United States of America. Nora Eccles Cardiovascular Research and Training Institute, SLC, UT, United States of America. School of Medicine, University of Utah, SLC, UT, United States of America. Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Graham AJ, Orini M, Zacur E, Dhillon G, Daw H, Srinivasan NT, Martin C, Lane J, Mansell JS, Cambridge A, Garcia J, Pugliese F, Segal O, Ahsan S, Lowe M, Finlay M, Earley MJ, Chow A, Sporton S, Dhinoja M, Hunter RJ, Schilling RJ, Lambiase PD. Evaluation of ECG Imaging to Map Hemodynamically Stable and Unstable Ventricular Arrhythmias. Circ Arrhythm Electrophysiol 2020; 13:e007377. [PMID: 31934784 DOI: 10.1161/circep.119.007377] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND ECG imaging (ECGI) has been used to guide treatment of ventricular ectopy and arrhythmias. However, the accuracy of ECGI in localizing the origin of arrhythmias during catheter ablation of ventricular tachycardia (VT) in structurally abnormal hearts remains to be fully validated. METHODS During catheter ablation of VT, simultaneous mapping was performed using electroanatomical mapping (CARTO, Biosense-Webster) and ECGI (CardioInsight, Medtronic) in 18 patients. Sites of entrainment, pace-mapping, and termination during ablation were used to define the VT site of origin (SoO). Distance between SoO and the site of earliest activation on ECGI were measured using co-registered geometries from both systems. The accuracy of ECGI versus a 12-lead surface ECG algorithm was compared. RESULTS A total of 29 VTs were available for comparison. Distance between SoO and sites of earliest activation in ECGI was 22.6, 13.9 to 36.2 mm (median, first to third quartile). ECGI mapped VT sites of origin onto the correct AHA segment with higher accuracy than a validated 12-lead ECG algorithm (83.3% versus 38.9%; P=0.015). CONCLUSIONS This simultaneous assessment demonstrates that CardioInsight localizes VT circuits with sufficient accuracy to provide a region of interest for targeting mapping for ablation. Resolution is not sufficient to guide discrete radiofrequency lesion delivery via catheter ablation without concomitant use of an electroanatomical mapping system but may be sufficient for segmental ablation with radiotherapy.
Collapse
Affiliation(s)
- Adam J Graham
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Michele Orini
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.D.L.)
| | - Ernesto Zacur
- Institute of Biomedical Engineering, University of Oxford, United Kingdom (E.Z.)
| | - Gurpreet Dhillon
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Holly Daw
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Neil T Srinivasan
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Claire Martin
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Jem Lane
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Josephine S Mansell
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Alex Cambridge
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Jason Garcia
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Francesca Pugliese
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Oliver Segal
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Syed Ahsan
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Martin Lowe
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Malcolm Finlay
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Mark J Earley
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Anthony Chow
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Simon Sporton
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Mehul Dhinoja
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Ross J Hunter
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Richard J Schilling
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.)
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (A.J.G., M.O., G.D., H.D., N.T.S., C.M., J.L., J.S.M., A.C., J.G., F.P., O.S., S.A., M.L., M.F., M.J.E., A.C., S.S., M.D., R.J.H., R.J.S., P.D.L.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.D.L.)
| |
Collapse
|
13
|
Rababah Msc AS, Bond RR, Msc KR, Guldenring D, McLaughlin J, Finlay DD. Novel hybrid method for interpolating missing information in body surface potential maps. J Electrocardiol 2019; 57S:S51-S55. [DOI: 10.1016/j.jelectrocard.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
|
14
|
Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Int J Radiat Oncol Biol Phys 2019; 104:1114-1123. [DOI: 10.1016/j.ijrobp.2019.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022]
|
15
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Tate J, Gillette K, Burton B, Good W, Zenger B, Coll-Font J, Brooks D, MacLeod R. Reducing Error in ECG Forward Simulations With Improved Source Sampling. Front Physiol 2018; 9:1304. [PMID: 30298018 PMCID: PMC6160576 DOI: 10.3389/fphys.2018.01304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022] Open
Abstract
A continuing challenge in validating electrocardiographic imaging (ECGI) is the persistent error in the associated forward problem observed in experimental studies. One possible cause of this error is insufficient representation of the cardiac sources; cardiac source measurements often sample only the ventricular epicardium, ignoring the endocardium and the atria. We hypothesize that measurements that completely cover the pericardial surface are required for accurate forward solutions. In this study, we used simulated and measured cardiac potentials to test the effect of different levels of spatial source sampling on the forward simulation. Not surprisingly, increasing the source sampling over the atria reduced the average error of the forward simulations, but some sampling strategies were more effective than others. Uniform and random distributions of samples across the atrial surface were the most efficient strategies in terms of lowest error with the fewest sampling locations, whereas “single direction” strategies, i.e., adding to the atrioventricular (AV) plane or atrial roof only, were the least efficient. Complete sampling of the atria is needed to eliminate errors from missing cardiac sources, but while high density sampling that covers the entire atria yields the best results, adding as few as 11 electrodes on the atria can significantly reduce these errors. Future validation studies of the ECG forward simulations should use a cardiac source sampling that takes these considerations into account, which will, in turn, improve validation and understanding of ECGI.
Collapse
Affiliation(s)
- Jess Tate
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Karli Gillette
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Brett Burton
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Wilson Good
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Brian Zenger
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Jaume Coll-Font
- Computational Radiology Lab, Children's Hospital, Boston, MA, United States
| | - Dana Brooks
- SPIRAL Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob MacLeod
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Szabó IA, Fárr A, Kocsis I, Máthé L, Szilágyi L, Frigy A. The Early Repolarization ECG Pattern – An Update. ACTA MEDICA MARISIENSIS 2017. [DOI: 10.1515/amma-2017-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Early repolarization pattern (ERP), a form of J-wave syndromes, was considered long time a benign ECG phenomenon. However, recent data confirmed that certain phenotypes of ERP are related to an increased risk of sudden cardiac death (idiopathic ventricular fibrillation). Our paper gives a short and practical update regarding the main issues related to ERP: epidemiological data, molecular and electrophysiological background, clinical significance and risk stratification. At the end, the future directions of research and clinical management related to ERP are presented.
Collapse
Affiliation(s)
- István Adorján Szabó
- Department of Cardiology, Clinical County Hospital Mures , Tîrgu Mureş , Romania
| | - Annamária Fárr
- Department of Physiopathology , University of Medicine and Pharmacy of Tîrgu Mureş , Romania
| | - Ildikó Kocsis
- Department of Cardiology, Clinical County Hospital Mures , Tîrgu Mureş , Romania
| | - Lehel Máthé
- Department of Internal Medicine VII , University of Medicine and Pharmacy of Tîrgu Mureş , Romania
| | | | - Atilla Frigy
- Department of Internal Medicine IV , University of Medicine and Pharmacy of Tîrgu Mureş , Romania
| |
Collapse
|
18
|
Coll-Font J, Dhamala J, Potyagaylo D, Schulze WHW, Tate JD, Guillem MS, van Dam P, Dossel O, Brooks DH, Macleod RS. The Consortium for Electrocardiographic Imaging. COMPUTING IN CARDIOLOGY 2016; 43:325-328. [PMID: 28451592 PMCID: PMC5404701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrocardiographic imaging (ECGI) has recently gained attention as a viable diagnostic tool for reconstructing cardiac electrical activity in normal hearts as well as in cardiac arrhythmias. However, progress has been limited by the lack of both standards and unbiased comparisons of approaches and techniques across the community, as well as the consequent difficulty of effective collaboration across research groups.. To address these limitations, we created the Consortium for Electrocardiographic Imaging (CEI), with the objective of facilitating collaboration across the research community in ECGI and creating standards for comparisons and reproducibility. Here we introduce CEI and describe its two main efforts, the creation of EDGAR, a public data repository, and the organization of three collaborative workgroups that address key components and applications in ECGI. Both EDGAR and the workgroups will facilitate the sharing of ideas, data and methods across the ECGI community and thus address the current lack of reproducibility, broad collaboration, and unbiased comparisons.
Collapse
Affiliation(s)
- Jaume Coll-Font
- B-SPIRAL Group, ECE Dept., Northeastern University, Boston (MA), USA
| | - Jwala Dhamala
- Rochester Institute of Technology, Rochester (NY), USA
| | | | | | - Jess D Tate
- SCI Institute Bioengineering Dept. University of Utah, Salt Lake City, (UT), USA
| | | | - Peter van Dam
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Olaf Dossel
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dana H Brooks
- B-SPIRAL Group, ECE Dept., Northeastern University, Boston (MA), USA
| | - Rob S Macleod
- SCI Institute Bioengineering Dept. University of Utah, Salt Lake City, (UT), USA
| |
Collapse
|
19
|
Deserno TM, Marx N. Computational Electrocardiography: Revisiting Holter ECG Monitoring. Methods Inf Med 2016; 55:305-11. [PMID: 27406338 DOI: 10.3414/me15-05-0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/07/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Since 1942, when Goldberger introduced the 12-lead electrocardiography (ECG), this diagnostic method has not been changed. OBJECTIVES After 70 years of technologic developments, we revisit Holter ECG from recording to understanding. METHODS A fundamental change is fore-seen towards "computational ECG" (CECG), where continuous monitoring is producing big data volumes that are impossible to be inspected conventionally but require efficient computational methods. We draw parallels between CECG and computational biology, in particular with respect to computed tomography, computed radiology, and computed photography. From that, we identify technology and methodology needed for CECG. RESULTS Real-time transfer of raw data into meaningful parameters that are tracked over time will allow prediction of serious events, such as sudden cardiac death. Evolved from Holter's technology, portable smartphones with Bluetooth-connected textile-embedded sensors will capture noisy raw data (recording), process meaningful parameters over time (analysis), and transfer them to cloud services for sharing (handling), predicting serious events, and alarming (understanding). To make this happen, the following fields need more research: i) signal processing, ii) cycle decomposition; iii) cycle normalization, iv) cycle modeling, v) clinical parameter computation, vi) physiological modeling, and vii) event prediction. CONCLUSIONS We shall start immediately developing methodology for CECG analysis and understanding.
Collapse
Affiliation(s)
- Thomas M Deserno
- Prof. Dr. Thomas Martin Deserno, Aachen University of Technology (RWTH), Department of Medical Informatics, Pauwelsstraße 30, 52074 Aachen, Germany, E-mail:
| | | |
Collapse
|
20
|
Mercer BN, Begg GA, Page SP, Bennett CP, Tayebjee MH, Mahida S. Early Repolarization Syndrome; Mechanistic Theories and Clinical Correlates. Front Physiol 2016; 7:266. [PMID: 27445855 PMCID: PMC4927622 DOI: 10.3389/fphys.2016.00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The early repolarization (ER) pattern on the 12-lead electrocardiogram is characterized by J point elevation in the inferior and/or lateral leads. The ER pattern is associated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). Based on studies in animal models and genetic studies, it has been proposed that J point elevation in ER is a manifestation of augmented dispersion of repolarization which creates a substrate for ventricular arrhythmia. A competing theory regarding early repolarization syndrome (ERS) proposes that the syndrome arises as a consequence of abnormal depolarization. In recent years, multiple clinical studies have described the characteristics of ER patients with VF in more detail. The majority of these studies have provided evidence to support basic science observations. However, not all clinical observations correlate with basic science findings. This review will provide an overview of basic science and genetic research in ER and correlate basic science evidence with the clinical phenotype.
Collapse
Affiliation(s)
- Ben N. Mercer
- West Yorkshire Arrhythmia Service, Leeds General InfirmaryLeeds, UK
| | - Gordon A. Begg
- West Yorkshire Arrhythmia Service, Leeds General InfirmaryLeeds, UK
| | - Stephen P. Page
- West Yorkshire Arrhythmia Service, Leeds General InfirmaryLeeds, UK
- Regional Inherited Cardiovascular Conditions Service, Leeds General InfirmaryLeeds, UK
| | | | | | - Saagar Mahida
- West Yorkshire Arrhythmia Service, Leeds General InfirmaryLeeds, UK
- Regional Inherited Cardiovascular Conditions Service, Leeds General InfirmaryLeeds, UK
| |
Collapse
|
21
|
Affiliation(s)
- Christine M Albert
- From Harvard Medical School, Center for Arrhythmia Prevention, Division of Cardiovascular and Preventive Medicine (C.M.A.), and Department of Medicine, Harvard Medical School, Cardiac Arrhythmia Program, Division of Cardiovascular Medicine (W.G.S.), Brigham and Women's Hospital, Boston, MA.
| | - William G Stevenson
- From Harvard Medical School, Center for Arrhythmia Prevention, Division of Cardiovascular and Preventive Medicine (C.M.A.), and Department of Medicine, Harvard Medical School, Cardiac Arrhythmia Program, Division of Cardiovascular Medicine (W.G.S.), Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
22
|
Gillette K, Tate J, Kindall B, Van Dam P, Kholmovski E, MacLeod R. Generation of Combined-Modality Tetrahedral Meshes. COMPUTING IN CARDIOLOGY 2015; 2015:953-956. [PMID: 27088101 PMCID: PMC4830507 DOI: 10.1109/cic.2015.7411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Registering and combining anatomical components from different image modalities, like MRI and CT that have different tissue contrast, could result in patient-specific models that more closely represent underlying anatomical structures. In this study, we combined a pair of CT and MRI scans of a pig thorax to make a tetrahedral mesh and compared different registration techniques including rigid, affine, thin plate spline morphing (TPSM), and iterative closest point (ICP), to superimpose the segmented bones from the CT scan on the soft tissues segmented from the MRI. The TPSM and affine-registered bones remained close to, but not overlapping, important soft tissue. Simulation models, including an ECG forward model and a defibrillation model, were computed on generated multi-modality meshes after TPSM and affine registration and compared to those based on the original torso mesh.
Collapse
Affiliation(s)
- Karli Gillette
- University of Utah, Salt Lake City, Utah, United States of America
| | - Jess Tate
- University of Utah, Salt Lake City, Utah, United States of America
| | - Brianna Kindall
- University of Utah, Salt Lake City, Utah, United States of America
| | - Peter Van Dam
- Radbound University Medical Center, Nijmegen, Netherlands
| | | | - Robert MacLeod
- University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
23
|
Dubois R, Shah AJ, Hocini M, Denis A, Derval N, Cochet H, Sacher F, Bear L, Duchateau J, Jais P, Haissaguerre M. Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias. J Electrocardiol 2015; 48:966-74. [PMID: 26403066 DOI: 10.1016/j.jelectrocard.2015.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/17/2022]
Abstract
Ten years ago, electrocardiographic imaging (ECGI) started to demonstrate its efficiency in clinical settings. The initial application to localize focal ventricular arrhythmias such as ventricular premature beats was probably the easiest to challenge and validates the concept. Our clinical experience in using this non-invasive mapping technique to identify the sources of electrical disorders and guide catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats) and ventricular pre-excitation (Wolff-Parkinson-White syndrome) is described here.
Collapse
Affiliation(s)
- Rémi Dubois
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France.
| | - Ashok J Shah
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Mélèze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Arnaud Denis
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Frédéric Sacher
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Laura Bear
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Josselin Duchateau
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Pierre Jais
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| | - Michel Haissaguerre
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, France; Hopital de Cardiologie du Haut Lévêque, CHU de Bordeaux, France; Université de Bordeaux, INSERM U1045, CRCTB, France
| |
Collapse
|
24
|
Aras K, Good W, Tate J, Burton B, Brooks D, Coll-Font J, Doessel O, Schulze W, Potyagaylo D, Wang L, van Dam P, MacLeod R. Experimental Data and Geometric Analysis Repository-EDGAR. J Electrocardiol 2015; 48:975-81. [PMID: 26320369 DOI: 10.1016/j.jelectrocard.2015.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project is a collaborative effort by the Consortium for ECG Imaging (CEI, ecg-imaging.org), and focused on two specific aims. One aim is to host an online repository that provides access to a wide spectrum of data, and the second aim is to provide a standard information format for the exchange of these diverse datasets. METHODS The EDGAR system is composed of two interrelated components: 1) a metadata model, which includes a set of descriptive parameters and information, time signals from both the cardiac source and body-surface, and extensive geometric information, including images, geometric models, and measure locations used during the data acquisition/generation; and 2) a web interface. This web interface provides efficient, search, browsing, and retrieval of data from the repository. RESULTS An aggregation of experimental, clinical and simulation data from various centers is being made available through the EDGAR project including experimental data from animal studies provided by the University of Utah (USA), clinical data from multiple human subjects provided by the Charles University Hospital (Czech Republic), and computer simulation data provided by the Karlsruhe Institute of Technology (Germany). CONCLUSIONS It is our hope that EDGAR will serve as a communal forum for sharing and distribution of cardiac electrophysiology data and geometric models for use in ECGI research.
Collapse
Affiliation(s)
- Kedar Aras
- Bioengineering Department, Scientific Computing and Imaging Institute (SCI), Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, USA.
| | - Wilson Good
- Bioengineering Department, Scientific Computing and Imaging Institute (SCI), Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, USA
| | - Jess Tate
- Bioengineering Department, Scientific Computing and Imaging Institute (SCI), Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, USA
| | - Brett Burton
- Bioengineering Department, Scientific Computing and Imaging Institute (SCI), Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, USA
| | - Dana Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Jaume Coll-Font
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Olaf Doessel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Walther Schulze
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Danila Potyagaylo
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Linwei Wang
- Program of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Peter van Dam
- Radboud University, Nijmegen, The Netherlands; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rob MacLeod
- Bioengineering Department, Scientific Computing and Imaging Institute (SCI), Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, USA
| |
Collapse
|