1
|
Mondéjar-Parreño G, Sánchez-Pérez P, Cruz FM, Jalife J. Promising tools for future drug discovery and development in antiarrhythmic therapy. Pharmacol Rev 2025; 77:100013. [PMID: 39952687 DOI: 10.1124/pharmrev.124.001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Arrhythmia refers to irregularities in the rate and rhythm of the heart, with symptoms spanning from mild palpitations to life-threatening arrhythmias and sudden cardiac death. The complex molecular nature of arrhythmias complicates the selection of appropriate treatment. Current therapies involve the use of antiarrhythmic drugs (class I-IV) with limited efficacy and dangerous side effects and implantable pacemakers and cardioverter-defibrillators with hardware-related complications and inappropriate shocks. The number of novel antiarrhythmic drugs in the development pipeline has decreased substantially during the last decade and underscores uncertainties regarding future developments in this field. Consequently, arrhythmia treatment poses significant challenges, prompting the need for alternative approaches. Remarkably, innovative drug discovery and development technologies show promise in helping advance antiarrhythmic therapies. In this article, we review unique characteristics and the transformative potential of emerging technologies that offer unprecedented opportunities for transitioning from traditional antiarrhythmics to next-generation therapies. We assess stem cell technology, emphasizing the utility of innovative cell profiling using multiomics, high-throughput screening, and advanced computational modeling in developing treatments tailored precisely to individual genetic and physiological profiles. We offer insights into gene therapy, peptide, and peptibody approaches for drug delivery. We finally discuss potential strengths and weaknesses of such techniques in reducing adverse effects and enhancing overall treatment outcomes, leading to more effective, specific, and safer therapies. Altogether, this comprehensive overview introduces innovative avenues for personalized rhythm therapy, with particular emphasis on drug discovery, aiming to advance the arrhythmia treatment landscape and the prevention of sudden cardiac death. SIGNIFICANCE STATEMENT: Arrhythmias and sudden cardiac death account for 15%-20% of deaths worldwide. However, current antiarrhythmic therapies are ineffective and have dangerous side effects. Here, we review the field of arrhythmia treatment underscoring the slow progress in advancing the cardiac rhythm therapy pipeline and the uncertainties regarding evolution of this field. We provide information on how emerging technological and experimental tools can help accelerate progress and address the limitations of antiarrhythmic drug discovery.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Reiffel JA, Robinson VM, Kowey PR. Perspective on Antiarrhythmic Drug Combinations. Am J Cardiol 2023; 192:116-123. [PMID: 36787682 DOI: 10.1016/j.amjcard.2023.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Physicians use multiple drugs in combination to treat hypertension, heart failure, diabetes mellitus, angina, hyperlipidemia, and many other cardiovascular conditions and risk factors. However, administering antiarrhythmic drugs (AAD) in combination is rarely discussed. Yet, the possibility of increasing efficacy and/or tolerance and/or safety of AADs (by adding mechanisms, offsetting adverse mechanisms, and/or using lower doses) exists. Unfortunately, this topic has not been reviewed in any contemporary cardiac literature of which we are aware, although information regarding AAD combinations has been published. In conclusion, and accordingly, this review discusses the possibility of using AAD combinations for both ventricular arrhythmias and atrial fibrillation, in which the rationale for such combinations, considerations for such combinations, and supporting literature are covered.
Collapse
Affiliation(s)
- James A Reiffel
- Vagelos College of Physicians & Surgeons, Columbia University, New York City, New York.
| | - Victoria M Robinson
- Lankenau Heart Institute, Wynnewood Pennsylvania, and Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter R Kowey
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Xu X, Yin Y, Li D, Yao B, Zhao L, Wang H, Wang H, Dong J, Zhang J, Peng R. Vicious LQT induced by a combination of factors different from hERG inhibition. Front Pharmacol 2022; 13:930831. [PMID: 35935820 PMCID: PMC9354841 DOI: 10.3389/fphar.2022.930831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Clinically, drug-induced torsades de pointes (TdP) are rare events, whereas the reduction of the human ether-à-go-go-related gene (hERG) current is common. In this study, we aimed to explore the specific factors that contribute to the deterioration of hERG inhibition into malignant ventricular arrhythmias. Cisapride, a drug removed from the market because it caused long QT (LQT) syndrome and torsade de pointes (TdP), was used to induce hERG inhibition. The effects of cisapride on the hERG current were evaluated using a whole-cell patch clamp. Based on the dose-response curve of cisapride, models of its effects at different doses (10, 100, and 1,000 nM) on guinea pig heart in vitro were established. The effects of cisapride on electrocardiogram (ECG) signals and QT interval changes in the guinea pigs were then comprehensively evaluated by multi-channel electrical mapping and high-resolution fluorescence mapping, and changes in the action potential were simultaneously detected. Cisapride dose-dependently inhibited the hERG current with a half inhibitory concentration (IC50) of 32.63 ± 3.71 nM. The complete hERG suppression by a high dose of cisapride (1,000 nM) prolonged the action potential duration (APD), but not early after depolarizations (EADs) and TdP occurred. With 1 μM cisapride and lower Mg2+/K+, the APD exhibited triangulation, dispersion, and instability. VT was induced in two of 12 guinea pig hearts. Furthermore, the combined administration of isoproterenol was not therapeutic and increased susceptibility to ventricular fibrillation (VF) development. hERG inhibition alone led to QT and ERP prolongation and exerted an anti-arrhythmic effect. However, after the combination with low concentrations of magnesium and potassium, the prolonged action potential became unstable, triangular, and dispersed, and VT was easy to induce. The combination of catecholamines shortened the APD, but triangulation and dispersion still existed. At this time, VF was easily induced and sustained.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Zhang
- *Correspondence: Jing Zhang, ; Ruiyun Peng,
| | | |
Collapse
|
4
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
5
|
Affiliation(s)
- James A. Reiffel
- Electrophysiology Section, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem 2020; 476:145-155. [PMID: 32845435 DOI: 10.1007/s11010-020-03891-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
In recent times cardiovascular diseases (CVDs) are the leading cause of mortality universally, caused more or less 17.7 million casualties with 45% of all illnesses (except communicable ones) in 2015 as per World Health Organization (WHO). According to American National Center for Health Statistics, cardiac disorders are costliest. Moreover, health care expenditures related to cardiac disorders are anticipated to exceed than diabetes and Alzheimer's. Straining of reactive oxygen species with diminished neutralization & inflammation critically adds to atherosclerosis and also proceed to other cardiovascular diseases such as cardiac remodeling and myocardial infarction (MI). In the past few years, researchers revealed multiple drug targets from animal studies and evaluated them in the therapeutics of cardiac disorders, which offered exciting clues for novel therapeutic strategies. Although, only few newer agents approved clinically and actual approaches for treatment are lagging behind. Several novel drugs found effective for the treatment of hypertension, congestive heart failure, cardiac arrhythmia and angina pectoris. Detailed mechanism of action, basic and clinical pharmacology of all novel drugs has been discussed in this review.
Collapse
|
7
|
Zhao P, Li P. Transmural and rate-dependent profiling of drug-induced arrhythmogenic risks through in silico simulations of multichannel pharmacology. Sci Rep 2019; 9:18504. [PMID: 31811197 PMCID: PMC6898675 DOI: 10.1038/s41598-019-55032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
In vitro human ether-à-go-go related gene (hERG) inhibition assay alone might provide insufficient information to discriminate "safe" from "dangerous" drugs. Here, effects of multichannel inhibition on cardiac electrophysiology were investigated using a family of cardiac cell models (Purkinje (P), endocardial (Endo), mid-myocardial (M) and epicardial (Epi)). We found that: (1) QT prolongation alone might not necessarily lead to early afterdepolarization (EAD) events, and it might be insufficient to predict arrhythmogenic liability; (2) the occurrence and onset of EAD events could be a candidate biomarker of drug-induced arrhythmogenicity; (3) M cells are more vulnerable to drug-induced arrhythmias, and can develop early afterdepolarization (EAD) at slower pacing rates; (4) the application of quinidine can cause EADs in all cell types, while INaL is the major depolarizing current during the generation of drug-induced EAD in P cells, ICaL is mostly responsible in other cell types; (5) drug-induced action potential (AP) alternans with beat-to-beat variations occur at high pacing rates in P cells. These results suggested that quantitative profiling of transmural and rate-dependent properties can be essential to evaluate drug-induced arrhythmogenic risks, and may provide mechanistic insights into drug-induced arrhythmias.
Collapse
Affiliation(s)
- Ping'an Zhao
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Henan, P.R. China
- Center for Biomedical Innovation, Yunmai Biomedical Research Institute, Henan, P.R. China
| | - Pan Li
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Henan, P.R. China.
- Center for Biomedical Innovation, Yunmai Biomedical Research Institute, Henan, P.R. China.
| |
Collapse
|
8
|
Del Canto I, Santamaría L, Genovés P, Such-Miquel L, Arias-Mutis O, Zarzoso M, Soler C, Parra G, Tormos Á, Alberola A, Such L, Chorro FJ. Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovasc Drugs Ther 2019; 32:413-425. [PMID: 30173392 DOI: 10.1007/s10557-018-6822-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Mechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch. METHODS Atrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts (n = 28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3 μM). RESULTS On comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3 μM. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3 μM diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (138 ± 26 ms vs 95 ± 9 ms; p < 0.01), ventricular refractoriness (155 ± 18 ms vs 124 ± 16 ms; p < 0.01) and increments in spectral concentration (23 ± 5% vs 17 ± 2%; p < 0.01), the fifth percentile of ventricular activation intervals (46 ± 8 ms vs 31 ± 3 ms; p < 0.05), and wavelength of ventricular fibrillation (2.5 ±0.5 cm vs 1.7 ± 0.3 cm; p < 0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control = 38%, 0.03 μM = 33%, 0.1 μM = 33%, 0.3 μM = 14%; p < 0.01) and the stretch-induced increments in arrhythmia complexity index (control = 62%, 0.03μM = 41%, 0.1 μM = 32%, 0.3 μM = 16%; p < 0.05) progressively decreased on increasing the GS967 concentration. CONCLUSIONS GS967 attenuates stretch-induced changes in cardiac electrophysiology.
Collapse
Affiliation(s)
- Irene Del Canto
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Laura Santamaría
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | | | - Luis Such-Miquel
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | | | - Manuel Zarzoso
- Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | - Carlos Soler
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Germán Parra
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Álvaro Tormos
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Alberola
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Luis Such
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Francisco J Chorro
- CIBER CV. Carlos III Health Institute, Madrid, Spain. .,Service of Cardiology, Valencia University Clinic Hospital, INCLIVA, Valencia, Spain. .,Department of Medicine, Valencia University - Estudi General, Valencia, Spain. .,Servicio de Cardiología, Hospital Clínico Universitario, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
9
|
Spitalieri P, Talarico RV, Caioli S, Murdocca M, Serafino A, Girasole M, Dinarelli S, Longo G, Pucci S, Botta A, Novelli G, Zona C, Mango R, Sangiuolo F. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2018; 118:95-109. [PMID: 29551391 DOI: 10.1016/j.yjmcc.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies.
Collapse
Affiliation(s)
- Paola Spitalieri
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Rosa V Talarico
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Michela Murdocca
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | - Sabina Pucci
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annalisa Botta
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Zona
- I.R.C.C.S. S. Lucia, Rome, Italy; Dept of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Federica Sangiuolo
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
10
|
Kanorskii SG, Smolenskaya NV. [Triple antianginal combinations in the treatment of elderly and senile patients with stable angina]. TERAPEVT ARKH 2017; 88:33-40. [PMID: 28139557 DOI: 10.17116/terarkh2016881233-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To compare the efficiency and safety of antianginal therapy (AAT) using a combination of bisoprolol, ivabradine, and trimetazidine or ranolazine in elderly and senile patients with stable angina. SUBJECTS AND METHODS The study enrolled 107 patients aged 60 to 79 years with coronary heart disease and Functional Class II and III angina. When the patients taking bisoprolol 1.25-2.5 mg once daily and ivabradine 2.5-7.5 mg twice daily continued to have angina and/or silent myocardial ischemia, after randomization 54 patients received an additional 35 mg of trimetazidine twice a day and 53 patients had ranolazine 500 mg twice daily. A comprehensive clinical and instrumental study was conducted prior to randomization and after 6 months of triple AAT. RESULTS The patients tolerated well both treatments that substantially improved the results of a treadmill exercise test. Trimetazidine reduced to a greater extent the duration of silent ST-segment depression, as evidenced by Holter monitoring. Trimetazidine and ranolazine comparably improved left ventricular systolic and diastolic function, large arterial structure and function, and quality of life in the patients. CONCLUSION The combinations of the low-dose β-blocker with ivabradine and trimetazidine or ranolazine may be used to treat refractory stable angina in elderly and senile patients. Trimetazidine is preferred due to its higher efficacy in treating silent myocardial ischemia and to its lower cost.
Collapse
Affiliation(s)
- S G Kanorskii
- Kuban State Medical University, Ministry of Health of Russia, Krasnodar, Russia
| | - N V Smolenskaya
- Kuban State Medical University, Ministry of Health of Russia, Krasnodar, Russia
| |
Collapse
|