1
|
Meng C, Wang X, Fan L, Fan Y, Yan Z, Wang Y, Li Y, Zhang J, Lv S. A new perspective in the prevention and treatment of antitumor therapy-related cardiotoxicity: Intestinal microecology. Biomed Pharmacother 2024; 170:115588. [PMID: 38039758 DOI: 10.1016/j.biopha.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/03/2023] Open
Abstract
The continuous development of antitumor therapy has significantly reduced the mortality of patients with malignancies. However, the antitumor-related cardiotoxicity has become the leading cause of long-term mortality in patients with malignancies. Besides, the pathogenesis of antitumor-related cardiotoxicity is still unclear, and practical means of prevention and treatment are lacking in clinical practice. Therefore, the major challenge is how to combat the cardiotoxicity of antitumor therapy effectively. More and more studies have shown that antitumor therapy kills tumor cells while causing damage to sensitive tissues such as the intestinal mucosa, leading to the increased permeability of the intestine and the dysbiosis of intestinal microecology. In addition, the dysbiosis of intestinal microecology contributes to the development and progression of cardiovascular diseases through multiple pathways. Thus, the dysbiosis of intestinal microecology may be a potential mechanism and target for antitumor-related cardiotoxicity. We summarized the characteristics of intestinal microecology disorders induced by antitumor therapy and the association between intestinal microecological dysbiosis and CVD. And on this basis, we hypothesized the potential mechanisms of intestinal microecology mediating the occurrence of antitumor-related cardiotoxicity. Then we reviewed the previous studies targeting intestinal microecology against antitumor-associated cardiotoxicity, aiming to provide a reference for future studies on the occurrence and prevention of antitumor-related cardiotoxicity by intestinal microecology.
Collapse
Affiliation(s)
- Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yajie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yanyang Li
- Department of integrated Chinese and Western medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| |
Collapse
|
2
|
Zhang S, Shi YN, Gu J, He P, Ai QD, Zhou XD, Wang W, Qin L. Mechanisms of dihydromyricetin against hepatocellular carcinoma elucidated by network pharmacology combined with experimental validation. PHARMACEUTICAL BIOLOGY 2023; 61:1108-1119. [PMID: 37462387 DOI: 10.1080/13880209.2023.2234000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Dihydromyricetin (DMY) is extracted from vine tea, a traditional Chinese herbal medicine with anti-cancer, liver protection, and cholesterol-lowering effects. OBJECTIVE This study investigated the mechanism of DMY against hepatocellular carcinoma (HCC). MATERIALS AND METHODS Potential DMY, HCC, and cholesterol targets were collected from relevant databases. PPI networks were created by STRING. Then, the hub genes of co-targets, screened using CytoHubba. GO and KEGG pathway enrichment, were performed by Metascape. Based on the above results, a series of in vitro experiments were conducted by using 40-160 μM DMY for 24 h, including transwell migration/invasion assay, western blotting, and Bodipy stain assay. RESULTS Network pharmacology identified 98 common targets and 10 hub genes of DMY, HCC, and cholesterol, and revealed that the anti-HCC effect of DMY may be related to the positive regulation of lipid rafts. Further experiments confirmed that DMY inhibits the proliferation, migration, and invasion of HCC cells and reduces their cholesterol levels in vitro. The IC50 is 894.4, 814.4, 467.8, 1,878.8, 151.8, and 156.9 μM for 97H, Hep3B, Sk-Hep1, SMMC-7721, HepG2, and Huh7 cells, respectively. In addition, DMY downregulates the expression of lipid raft markers (CAV1, FLOT1), as well as EGFR, PI3K, Akt, STAT3, and Erk. DISCUSSION AND CONCLUSION The present study reveals that DMY suppresses EGFR and its downstream pathways by reducing cholesterol to disrupt lipid rafts, thereby inhibiting HCC, which provides a promising candidate drug with low toxicity for the treatment of HCC.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng He
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qi-Di Ai
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Teimouri K, Khoshgard K, Farshchian N, Rouzbahani M, Azimivaghar J. Investigation of electrocardiography and echocardiography changes after adjuvant radiation therapy of left-sided breast cancer. J Med Imaging Radiat Sci 2023; 54:495-502. [PMID: 37183077 DOI: 10.1016/j.jmir.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION The primary objective of radiation therapy (RT) is to deliver lethal radiation doses to abnormal cancer cells so that healthy cells are exposed to minimal radiation. In the present study, changes in electrocardiography (ECG) and echocardiography(ECHO) following adjuvant RT were investigated in patients with left-sided breast cancer. MATERIALS AND METHODS 30 patients with left-sided breast cancer who had previously undergone breast-conserving surgery or mastectomy underwent RT after completing chemotherapy from February 2019 to January 2020. ECG and ECHO tests were performed before RT, immediately following RT, and three months after RT. Dose-volume parameters of the heart and its substructures as an organ at risk were analyzed. RESULTS The mean heart dose (±SD) for all patients was 7.51 ± 2.42 Gy. T-wave inversion was observed 3 months after RT in 47% of patients. T-wave decline was associated with mean heart radiation dose (β = 0.605, p-value = 0.005). The present study showed that the left ventricular volume receiving the 5 Gy (LV-V5) parameter was associated with a reduction in ST segment duration (p-value = 0.027) as well as with an increase in left ventricular systolic diameter (LVESD, mm) (P-value = 0.027). CONCLUSION RT-induced ECG and ECHO changes are frequent in patients with left breast cancer. LVEF and Twave abnormalities were observed after RT in our patients. ECG and ECHO modalities can be used to monitor the cardiac function after RT in patients with left-sided breast cancer.
Collapse
Affiliation(s)
- Kolsoum Teimouri
- Students Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Negin Farshchian
- Department of Radiation Oncology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rouzbahani
- Department of Cardiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Azimivaghar
- Department of Cardiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Huo M, Tang Z, Wang L, Zhang L, Guo H, Chen Y, Gu P, Shi J. Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron. Nat Commun 2022; 13:7778. [PMID: 36522337 PMCID: PMC9755285 DOI: 10.1038/s41467-022-35503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Distressing and lethal cardiotoxicity is one of the major severe side effects of using anthracycline drugs such as doxorubicin for cancer chemotherapy. The currently available strategy to counteract these side effects relies on the administration of cardioprotective agents such as Dexrazoxane, which unfortunately has unsatisfactory efficacy and produces secondary myelosuppression. In the present work, aiming to target the characteristic ferrous iron overload in the doxorubicin-contaminated cardiac microenvironment, a biocompatible nanomedicine prepared by the polyvinylpyrrolidone-directed assembly of magnesium hexacyanoferrate nanocatalysts is designed and constructed for highly efficient intracellular ferrous ion capture and antioxidation. The synthesized magnesium hexacyanoferrate nanocatalysts display prominent superoxide radical dismutation and catalytic H2O2 decomposition activities to eliminate cytotoxic radical species. Excellent in vitro and in vivo cardioprotection from these magnesium hexacyanoferrate nanocatalysts are demonstrated, and the underlying intracellular ferrous ion traffic regulation mechanism has been explored in detail. The marked cardioprotective effect and biocompatibility render these magnesium hexacyanoferrate nanocatalysts to be highly promising and clinically transformable cardioprotective agents that can be employed during cancer treatment.
Collapse
Affiliation(s)
- Minfeng Huo
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China ,grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China ,grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Zhimin Tang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, P.R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, P.R. China
| | - Liying Wang
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China
| | - Linlin Zhang
- grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China
| | - Haiyan Guo
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, P. R. China
| | - Yu Chen
- grid.39436.3b0000 0001 2323 5732Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P.R. China
| | - Ping Gu
- grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China ,grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, P.R. China
| | - Jianlin Shi
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China ,grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China ,grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|
5
|
Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, Imran M, Alshammari MK, Alshehri MM, Harshan AA, Alanazi A, Alhazmi BD, Sreeharsha N. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals (Basel) 2021; 14:ph14100970. [PMID: 34681194 PMCID: PMC8539940 DOI: 10.3390/ph14100970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.
Collapse
Affiliation(s)
- Archana Adhikari
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.M.B.A.); (M.C.)
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Manodeep Chakraborty
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
- Correspondence: (S.M.B.A.); (M.C.)
| | - Gayatri Thapa
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Nihar Ranjan Bhuyan
- Department of Pharmaceutical Analysis, Himalayan Pharmacy Institute, Majhitar, Rangpo 737136, Sikkim, India;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin 39745, Saudi Arabia;
| | - Abeer Alanazi
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| |
Collapse
|
6
|
Boda-Heggemann J, Blanck O, Mehrhof F, Ernst F, Buergy D, Fleckenstein J, Tülümen E, Krug D, Siebert FA, Zaman A, Kluge AK, Parwani AS, Andratschke N, Mayinger MC, Ehrbar S, Saguner AM, Celik E, Baus WW, Stauber A, Vogel L, Schweikard A, Budach V, Dunst J, Boldt LH, Bonnemeier H, Rudic B. Interdisciplinary Clinical Target Volume Generation for Cardiac Radioablation: Multicenter Benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) Trial. Int J Radiat Oncol Biol Phys 2021; 110:745-756. [PMID: 33508373 DOI: 10.1016/j.ijrobp.2021.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for therapy-refractory ventricular tachycardia (VT) ineligible for catheter ablation. Three-dimensional clinical target volume (CTV) definition is a key step, and this complex interdisciplinary procedure includes VT-substrate identification based on electroanatomical mapping (EAM) and its transfer to the planning computed tomography (PCT). Benchmarking of this process is necessary for multicenter clinical studies such as the RAVENTA trial. METHODS AND MATERIALS For benchmarking of the RAVENTA trial, patient data (epicrisis, electrocardiogram, high-resolution EAM, contrast-enhanced cardiac computed tomography, PCT) of 3 cases were sent to 5 university centers for independent CTV generation, subsequent structure analysis, and consensus finding. VT substrates were first defined on multiple EAM screenshots/videos and manually transferred to the PCT. The generated structure characteristics were then independently analyzed (volume, localization, surface distance and conformity). After subsequent discussion, consensus structures were defined. RESULTS VT substrate on the EAM showed visible variability in extent and localization for cases 1 and 2 and only minor variability for case 3. CTVs ranged from 6.7 to 22.9 cm3, 5.9 to 79.9 cm3, and 9.4 to 34.3 cm3; surface area varied from 1087 to 3285 mm2, 1077 to 9500 mm2, and 1620 to 4179 mm2, with a Hausdorff-distance of 15.7 to 39.5 mm, 23.1 to 43.5 mm, and 15.9 to 43.9 mm for cases 1 to 3, respectively. The absolute 3-dimensional center-of-mass difference was 5.8 to 28.0 mm, 8.4 to 26 mm, and 3.8 to 35.1 mm for cases 1 to 3, respectively. The entire process resulted in CTV structures with a conformity index of 0.2 to 0.83, 0.02 to 0.85, and 0.02 to 0.88 (ideal 1) with the consensus CTV as reference. CONCLUSIONS Multicenter efficacy endpoint assessment of cardiac radioablation for therapy-refractory VT requires consistent CTV transfer methods from the EAM to the PCT. VT substrate definition and CTVs were comparable with current clinical practice. Remarkable differences regarding the degree of agreement of the CTV definition on the EAM and the PCT were noted, indicating a loss of agreement during the transfer process between EAM and PCT. Cardiac radioablation should be performed under well-defined protocols and in clinical trials with benchmarking and consensus forming.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Floris Ernst
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erol Tülümen
- I. Medizinische Klinik, Universitätsklinikum Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Anne K Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Abdul Shokor Parwani
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, UniversitätsSpital Zürich, Zürich, CH
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annina Stauber
- Klinik III für Kardiologie, Angiologie, Pneumologie und Internistische Intensivmedizin, Universitätsklinikum Köln, Köln, Germany
| | - Lena Vogel
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Boris Rudic
- I. Medizinische Klinik, Universitätsklinikum Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Cardiovascular comorbidity among cancer patients is a growing clinical problem with the dramatic improvements in cancer survival. Cardio-oncology has developed as a new medical field dedicated to addressing the complex issues faced by patients who have both cancer and cardiovascular disease. This article explains to the reader what cardio-oncology services provide and the nature of cardiovascular problems caused by the growing array of modern cancer therapies. RECENT FINDINGS The list of potentially cardiotoxic cancer therapeutic agents is ever growing and dedicated cardio-oncology experts are required to tackle cardiovascular complications with minimal delay to necessary cancer therapy. Cardio-oncology services originated in academic centres but are now being set up around the world in all hospitals and clinics that provide care to cancer patients. Cardio-oncology plays an increasingly active role at every stage of cancer therapy including baseline risk assessment pretreatment, surveillance and prevention during treatment, response to acute complications and assessment in survivors post cardiotoxic treatments. New treatment strategies exist to optimize cancer treatment so it can be completed safely. SUMMARY In the present review, we explore the rationale, aims and roles of cardio-oncology, as well as future directions, which will certainly require multidisciplinary international collaboration.
Collapse
Affiliation(s)
- Jiliu Pan
- Cardio-Oncology Service, Royal Brompton Hospital, London, UK
| | - Felipe Garza
- Service of Cardiology, Department of Internal Medicine, UANL University Hospital, Monterrey, Nuevo Leon, México
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021; 197:730-743. [PMID: 33885910 PMCID: PMC8292237 DOI: 10.1007/s00066-021-01774-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage. Supplementary Information The online version of this article (10.1007/s00066-021-01774-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany.
| | - Mariana Bobeica
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.,Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Bucharest-Magurele, 077125, Romania
| | - Michael Unger
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| | - Anastasia Bednarz
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| | - Bjoern Gerold
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.,Theraclion, 102 Rue Etienne Dolet, Malakoff, 92240, France
| | - Ina Patties
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany.,Department of Radiation Oncology, University of Leipzig, Stephanstr. 9a, Leipzig, 04103, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany. .,Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| |
Collapse
|
9
|
Lee C, Maan A, Singh JP, Fradley MG. Arrhythmias and device therapies in patients with cancer therapy-induced cardiomyopathy. Heart Rhythm 2021; 18:1223-1229. [PMID: 33640446 DOI: 10.1016/j.hrthm.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Our knowledge of associated cardiotoxicities from novel therapeutics in oncology continues to expand. These include arrhythmias from cancer-therapy induced cardiomyopathy resulting from both direct and indirect effects on cardiomyocytes and other mechanisms that can adversely impact cardiovascular outcomes and overall mortality. In this review, we focus on both the arrhythmias of various classes of oncologic agents as well as the use of cardiac implantable electronic devices (cardioverter-defibrillators, permanent pacemakers, and cardiac resynchronization therapy) in cardio-oncology patients.
Collapse
Affiliation(s)
- Charlotte Lee
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Abhishek Maan
- Department of Cardiac Electrophysiology, The Mount Sinai Hospital, New York, New York
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
11
|
Koutroumpakis E, Palaskas NL, Lin SH, Abe JI, Liao Z, Banchs J, Deswal A, Yusuf SW. Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy 2020; 65:65-76. [PMID: 33049738 DOI: 10.1159/000510573] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
Despite the advancements of modern radiotherapy, radiation-induced heart disease remains a common cause of morbidity and mortality amongst cancer survivors. This review outlines the basic mechanism, clinical presentation, risk stratification, early detection, possible mitigation, and treatment of this condition.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Division of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose Banchs
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| |
Collapse
|