1
|
Prigyai N, Bunchuay T, Ruengsuk A, Yoshinari N, Manissorn J, Pumirat P, Sapudom J, Kosiyachinda P, Thongnuek P. Photo-Controlled Reversible Uptake and Release of a Modified Sulfamethoxazole Antibiotic Drug from a Pillar[5]arene Cross-Linked Gelatin Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8250-8265. [PMID: 38326106 DOI: 10.1021/acsami.3c14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.
Collapse
Affiliation(s)
- Nicha Prigyai
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Juthathip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarapon Pumirat
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Construction of unique pseudo[1]rotaxanes and [1]rotaxanes based on mono-functionalized pillar[5]arene Schiff bases. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Wang Q, Bian X, Yao H, Yuan X, Han Y, Yan C. Utilization of pillar[5]arene-based ICT probes embedded into proteins for live-cell imaging and traceable drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112683. [DOI: 10.1016/j.msec.2022.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
|
5
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Yang L, Nie CY, Han Y, Sun J, Yan CG. Self-assembly of bis-[1]rotaxanes based on diverse thiourea-bridged mono-functionalized dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01103-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ye J, Zhang R, Yang W, Han Y, Guo H, Xie J, Yan C, Yao Y. Pillar[5]arene-based [3]rotaxanes: Convenient construction via multicomponent reaction and pH responsive self-assembly in water. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Synthesis and characterization of bis-[1]rotaxanes via salen-bridged bis-pillar[5]arenes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Zhao LL, Han Y, Yan CG. Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang Z, Sun K, Li S, Yu G. A pillar[5]arene-based molecular grapple of hexafluorophosphate. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sun S, Lu D, Huang Q, Liu Q, Yao Y, Shi Y. Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. J Colloid Interface Sci 2019; 533:42-46. [DOI: 10.1016/j.jcis.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
|
12
|
Tan LL, Li Y, Jin Y, Zhang W, Yang YW. Pillar[6]arene-based Molecular Trap with Unusual Conformation and Topology. Isr J Chem 2018. [DOI: 10.1002/ijch.201800057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Li-Li Tan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU); Xi'an 710072 P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yupeng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yinghua Jin
- Department of Chemistry and Biochemistry; University of Colorado; Boulder, Colorado 80309 USA
| | - Wei Zhang
- Department of Chemistry and Biochemistry; University of Colorado; Boulder, Colorado 80309 USA
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| |
Collapse
|
13
|
Han Y, Xu LM, Nie CY, Jiang S, Sun J, Yan CG. Synthesis of diamido-bridged bis-pillar[5]arenes and tris-pillar[5]arenes for construction of unique [1]rotaxanes and bis-[1]rotaxanes. Beilstein J Org Chem 2018; 14:1660-1667. [PMID: 30013692 PMCID: PMC6036973 DOI: 10.3762/bjoc.14.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
The pillar[5]arene mono- and di(oxyalkoxy)benzoic acids were successfully prepared in high yields by sequential alkylation of ω-bromoalkoxy-substituted pillar[5]arenes with methyl or ethyl p-hydroxybenzoate followed by a hydrolytic reaction under basic conditions. Under catalysis of HOBt/EDCl, the amidation reaction of pillar[5]arene mono(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes afforded diamido-bridged bis-pillar[5]arenes. 1H NMR and 2D NOESY spectra clearly indicated that [1]rotaxanes were formed by insertion of longer diaminoalkylene unit into the cavity of one pillar[5]arene with another pillar[5]arene acting as a stopper. The similar catalysed amidation reaction of pillar[5]arene di(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes resulted in the diamido-bridged tris-pillar[5]arenes, which successfully form the unique bis-[1]rotaxanes bearing longer than diaminopropylene diamido bridges.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Li-Ming Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Cui-Yun Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shuo Jiang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|