1
|
Wu K, Ruan X, Li Q, Jiang Q, Ni S, Zhou Q. Phosphine-Catalyzed [3 + 4] Annulations of Salicylaldehyde Schiff Bases with α-Substituted Allenes: Construction of Functionalized Benzoxepine Fused Succinimide Derivatives. Org Lett 2024; 26:9425-9430. [PMID: 39475578 DOI: 10.1021/acs.orglett.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Herein we reported a novel strategy for constructing benzoxepine fused succinimide derivatives via a phosphine-catalyzed [3 + 4] cyclization of α-substituted allenes and salicylaldehyde Schiff bases. This methodology serves as a conduit for the construction of benzoxepine derivatives in good yields under mild conditions by an unprecedented mode involving the β'-carbon of allenes. Density functional theory calculations were conducted to study the possible mechanism. Moreover, this class of compounds exhibited the potential ability of cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Ke Wu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Quanxin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qihe Jiang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
3
|
Maurya JP, Swain SS, Ramasastry SSV. Phosphine-promoted intramolecular Rauhut-Currier/Wittig reaction cascade to access (hetero)arene-fused diquinanes. Org Biomol Chem 2024; 22:5718-5723. [PMID: 38919118 DOI: 10.1039/d4ob00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
We describe the first phosphine-promoted intramolecular Rauhut-Currier reaction that triggers an intramolecular Wittig process assembling new classes of diquinanes. The one-pot strategy provides ready access to simple diquinanes and various (hetero)arene-fused diquinanes incorporated with up to two contiguous all-carbon quaternary centers under metal-free and neutral conditions. We showcased the generality of the method on a broad range of substrates and demonstrated its synthetic utility in accessing various advanced intermediates relevant to natural product synthesis and material science.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Subham S Swain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
4
|
Maurya JP, Ramasastry SSV. Phosphine-Promoted Ring Opening/Recyclization of Cyclopropyl Ketones to Access Hydrofluorenones. Org Lett 2024; 26:2282-2286. [PMID: 38471028 DOI: 10.1021/acs.orglett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The ring-reorganizing transformations of activated cyclopropanes are typically achieved under acidic conditions. This Letter describes the first acid-free and Lewis base-mediated cascade ring opening/recyclization of designed cyclopropyl ketones to access tetrahydrofluorenones. We rationally merged the nucleophilic features of phosphines with the electronically biased cyclopropanes to synthesize several new classes of hydrofluorenones. We have also demonstrated the synthetic utility of the products in accessing highly functionalized molecular scaffolds.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
5
|
Dutta L, Mondal A, Maurya JP, Mukhopadhyay D, Ramasastry SSV. Conceptual advances in nucleophilic organophosphine-promoted transformations. Chem Commun (Camb) 2023; 59:11045-11056. [PMID: 37656437 DOI: 10.1039/d3cc03648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Catalysis by trivalent nucleophilic organophosphines has emerged as an essential tool in organic synthesis. Several new organic transformations promoted by phosphines substantiate and complement the existing synthetic chemistry tools. Mere design of the substrate and reagent combinations has introduced new modes of reactivity patterns, which are otherwise difficult to achieve. These design considerations have led to the rapid build-up of complex molecular entities and laid a solid foundation to synthesise bioactive natural products and pharmaceuticals. This article presents an overview of some of the conceptual advances, including our contributions to nucleophilic organophosphine chemistry. The scope, limitations, mechanistic insights, and applications of these metal-free transformations are discussed elaborately.
Collapse
Affiliation(s)
- Lona Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Atanu Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Dipto Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
6
|
Nowrouzi N, Abbasi M, Zellifard Z. Ph 3P-mediated decarboxylative ring-opening of maleic anhydride by thiolic compounds: formation of two carbon-sulfur bonds. RSC Adv 2023; 13:9242-9246. [PMID: 36950714 PMCID: PMC10026555 DOI: 10.1039/d3ra00294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
In this study, a simple and efficient method for the formation of carbon-sulfur bonds is described. In this process, ring opening of maleic anhydride by thiols or disulfides and triphenylphosphine led to the formation of sulfide products via formation of two carbon-sulfur bonds.
Collapse
Affiliation(s)
- N Nowrouzi
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 75169 Iran +98-77-33441494 +98-77-31222341
| | - M Abbasi
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 75169 Iran +98-77-33441494 +98-77-31222341
| | - Z Zellifard
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 75169 Iran +98-77-33441494 +98-77-31222341
| |
Collapse
|
7
|
Tian X, Zhang Y, Dong H, Ren W, Wang Y. Asymmetric α-Regioselective [3 + 2] Annulation of Morita-Baylis-Hillman Carbonates: Construction of Three Contiguous Stereocenters with Vicinal Quaternary Carbon Centers. J Org Chem 2022; 87:9593-9606. [PMID: 35833878 DOI: 10.1021/acs.joc.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric α-regioselective annulation of MBH carbonates with 4-arylmethylisoxazol-5-ones has been developed to afford spirocyclic oxindole derivatives containing three contiguous stereogenic centers and vicinal all-carbon quaternary chiral centers. This reaction exhibits a broad substrate scope and excellent functional group tolerance. Excellent yields with high diastereo- and enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
8
|
Li K, Zhang Z, Zhu J, Wang Y, Zhao J, Li EQ, Duan Z. Diastereodivergent synthesis of fully disubstituted spiro[indoline-3,2′-pyrrolidin]-2-ones via tuneable Lewis base/Brønsted base-promoted (3 + 2) cycloadditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01124c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed unique base-promoted diastereoselective (3 + 2) cycloadditions. A diastereodivergent synthesis of fully disubstituted spiro[indoline-3,2′-pyrrolidin]-2-ones was realized by tuning a Lewis base/Brønsted base.
Collapse
Affiliation(s)
- Ke Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhipeng Zhang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiahui Zhu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuxin Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jing Zhao
- Xuchang Environmental Monitoring Center, Henan Province, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Meng Y, Chen L, Li EQ. Recent Advances in Lewis Base-Catalysed Chemo-, Diastereo- and Enantiodivergent Reactions of Electron-deficient Olefins and Alkynes. CHEM REC 2021; 22:e202100276. [PMID: 34962071 DOI: 10.1002/tcr.202100276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Lewis base catalysis provides powerful synthetic strategies for the selective construction of carbon-carbon and carbon-heteroatom bonds. Thus continuous efforts have been deployed to develop effective methodologies involving Lewis base catalysis. The nucleophilicity and steric hindrance of Lewis base catalyst often plays a major role in catalytic reactivity and selectivity in the reaction. In the past decades, tremendous progress has been made in the divergent construction of valuable motifs under Lewis base catalysis. In this review, we provide a comprehensive and updated summary of Lewis base-catalysed chemo-, diastereo- and enantiodivergent reaction, as well as the related mechanism will be highlighted in detail.
Collapse
Affiliation(s)
- Yinggao Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
10
|
Li C, Qi ZC, Li JY, Yang SD. Heck Reaction Boosted Heterocycle Ring-Closing and Ring-Opening Rearrangement: A Strategy for the Synthesis of Indolyl-Type Ligands. J Org Chem 2021; 86:16977-16991. [PMID: 34792365 DOI: 10.1021/acs.joc.1c02117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel method for P-involved heterocycle ring-closing-ring-opening rearrangement (HRR) via the Heck reaction is disclosed. The approach enables direct installation of a phosphorus-containing aryl group onto the C2 position of indole. This new rearrangement directly transforms easily prepared indole derivatives into indolyl-derived phosphonates and phosphinic acids with high yields, and many of the products are difficult to obtain by using established methods. This new HRR reaction provides an extremely simple and step-economic method to induce C-C bond formation and P-N bond cleavage for the synthesis of a variety of indolyl-type ligands.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing-Yu Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
11
|
Biswas K, Das A, Ganesh V. Recent Advances in Organophosphorus‐Catalyzed Borylation and Silylation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Krishna Biswas
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Aniruddha Das
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
12
|
Huang Y, Liao J, Wang W, Liu H, Guo H. Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chem Commun (Camb) 2020; 56:15235-15281. [PMID: 33320123 DOI: 10.1039/d0cc05699e] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleophilic phosphine catalysis is a practical and powerful tool for the synthesis of various heterocyclic compounds with the advantages of environmentally friendly, metal-free, and mild reaction conditions. The present report summarizes the construction of four to eight-membered heterocyclic compounds containing nitrogen, oxygen and sulphur atoms through phosphine-catalyzed intramolecular annulations and intermolecular [2+2], [3+2], [4+1], [3+1+1], [5+1], [4+2], [2+2+2], [3+3], [4+3] and [3+2+3] annulations of electron-deficient alkenes, allenes, alkynes and Morita-Baylis-Hillman carbonates.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
13
|
Blank BR, Andrews IP, Kwon O. Phosphine-Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3-Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem 2020; 12:4352-4372. [PMID: 34447481 PMCID: PMC8386297 DOI: 10.1002/cctc.202000626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 01/02/2023]
Abstract
We have developed a phosphine-catalyzed (4+1) annulative rearrangement for the preparation of 3-pyrrolines from allenylic carbamates via phosphonium diene intermediates. We employed this methodology to synthesize an array of 1,3-disubstituted- and 1,2,3-trisubstituted-3-pyrrolines, including the often difficult to prepare 2-alkyl variants. A mechanistic investigation employing allenylic acetates and mononucleophiles unexpectedly unveiled that a phosphine-catalyzed (4+1) reaction for the construction of cyclopentene products, previously reported by Tong, might not occur through a phosphonium diene, as had been proposed, but rather through multiple mechanisms working in concert. Consequently, our phosphine-catalyzed rearrangement is most likely the first transformation to involve the unequivocal formation of a phosphonium diene intermediate along the reaction pathway. To demonstrate the synthetic utility of this newly developed reaction, we have completed concise formal syntheses of the pyrrolizidine alkaloids (±)-trachelanthamidine and (±)-supinidine.
Collapse
Affiliation(s)
- Brian R Blank
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ian P Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| |
Collapse
|
14
|
Han Y, Zheng H, Zhang YY, Yan CG. Molecular diversity of triphenylphosphine promoted reaction of electron-deficient alkynes and arylidene Meldrum acid (N,N'-dimethylbarbituric acid). CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Abstract
The 1,3-dipolar cycloaddition reaction is a powerful and versatile strategy for
the synthesis of carbocyclic and heterocyclic five-membered rings. Herein, the most recent
developments on the [3+2] cycloaddition reactions using allenes acting either as dipolarophiles
or 1,3-dipole precursors, are highlighted. The recent contributions on the
phosphine- and transition metal-catalyzed [3+2] annulations involving allenes as substrates
are also covered, with the exception of those in which the formation of a 1,3-dipole
(or synthetic equivalent) is not invoked.
This review summarizes the most relevant research in which allenes are used as building
blocks for the construction of structurally diverse five-membered rings via [3+2] annulation
reactions.
Collapse
Affiliation(s)
- Ana L. Cardoso
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria I.L. Soares
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Affiliation(s)
- Hongen Cao
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Research and Development Center for Fine Chemicals Guizhou University Guiyang 550025 Guizhou People's Republic of China
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 Jiangsu People's Republic of China
| | - Fenglin Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| |
Collapse
|
17
|
Wang X, Lu M, Su Q, Zhou M, Addepalli Y, Yao W, Wang Z, Lu Y. Phosphine‐Catalyzed [4+2] Cycloadditions of Allenic Ketones: Enantioselective Synthesis of Functionalized Tetrahydropyridines. Chem Asian J 2019; 14:3409-3413. [DOI: 10.1002/asia.201901104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xin Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Mengxue Lu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Qin Su
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Minghui Zhou
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Yesu Addepalli
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Weijun Yao
- Department of ChemistryZhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug ResearchChongqing University Chongqing 401331 P.R. China
| | - Yixin Lu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- National University of Singapore (Suzhou) Research Institute Suzhou 215123 P.R. China
| |
Collapse
|
18
|
Owolabi IA, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. Amino Amide Organocatalysts for Asymmetric Michael Addition of β-Keto Esters with β-Nitroolefins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Isiaka Alade Owolabi
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Madhu Chennapuram
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Chigusa Seki
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuko Okuyama
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Koji Uwai
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Michio Tokiwa
- Tokiwakai Group, 62 Numajiri, Tsuduri-chou, Uchigo, Iwaki, Fukushima 973-8053, Japan
| | - Mitsuhiro Takeshita
- Tokiwakai Group, 62 Numajiri, Tsuduri-chou, Uchigo, Iwaki, Fukushima 973-8053, Japan
| | - Hiroto Nakano
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| |
Collapse
|
19
|
Sun W, Jiang F, Liu H, Gao X, Jia H, Zhang C, Guo H. Double [3 + 2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Yuan FR, Jiang F, Chen KW, Mei GJ, Wu Q, Shi F. Phosphine-catalyzed [4 + 2] cyclization of para-quinone methide derivatives with allenes. Org Biomol Chem 2019; 17:2361-2369. [DOI: 10.1039/c8ob02979b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first [4 + 2] cyclization of para-quinone methide derivatives with allenes has been established via phosphine catalysis, which afforded a series of chroman derivatives in high yields (up to 97%) and excellent (E/Z)-selectivities (all >95 : 5 E/Z).
Collapse
Affiliation(s)
- Fu-Ru Yuan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Fei Jiang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Ke-Wei Chen
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
21
|
Jin LW, Jiang F, Chen KW, Du BX, Mei GJ, Shi F. Phosphine-catalyzed regiospecific (3 + 2) cyclization of 3-nitroindoles with allene esters. Org Biomol Chem 2019; 17:3894-3901. [DOI: 10.1039/c9ob00432g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title reaction has been established to construct indole-fused five-membered rings in good yields (up to 86%).
Collapse
Affiliation(s)
- Li-Wen Jin
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Fei Jiang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Ke-Wei Chen
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Bai-Xiang Du
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
22
|
Anitha M, Kumara Swamy KC. Highly functionalised (γ-azido/γ-fluoro-β-iodo/)vinyl derivatives from phosphorus based allenes or allenoates: I⋯O halogen bonding interactions. Org Biomol Chem 2019; 17:5736-5748. [DOI: 10.1039/c9ob00715f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
γ-Azido/γ-fluoro-β-iodo-vinyl phosphine oxides/phosphonates/esters/sulphone and a γ-diodoallene were synthesised from phosphorus-based allenes or allenoates or a sulphur based allene; in many cases, I⋯O halogen bonding is observed in the solid state.
Collapse
Affiliation(s)
- Mandala Anitha
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | | |
Collapse
|
23
|
Zhao JQ, Yang L, You Y, Wang ZH, Xie KX, Zhang XM, Xu XY, Yuan WC. Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Org Biomol Chem 2019; 17:5294-5304. [DOI: 10.1039/c9ob00775j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Ph2PMe-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans, 2-nitrobenzothiophenes, and 3-nitrobenzothiophenes with allenoates is reported.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
24
|
Li L, Chen Q, Xiong X, Zhang C, Qian J, Shi J, An Q, Zhang M. Synthesis of polysubstituted pyrroles via a gold(I)-catalyzed tandem three-component reaction at room temperature. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Abstract
The hallmark of nucleophilic phosphine catalysis is the initial nucleophilic addition of a phosphine to an electrophilic starting material, producing a reactive zwitterionic intermediate, generally under mild conditions. In this Review, we classify nucleophilic phosphine catalysis reactions in terms of their electrophilic components. In the majority of cases, these electrophiles possess carbon-carbon multiple bonds: alkenes (section 2), allenes (section 3), alkynes (section 4), and Morita-Baylis-Hillman (MBH) alcohol derivatives (MBHADs; section 5). Within each of these sections, the reactions are compiled based on the nature of the second starting material-nucleophiles, dinucleophiles, electrophiles, and electrophile-nucleophiles. Nucleophilic phosphine catalysis reactions that occur via the initial addition to starting materials that do not possess carbon-carbon multiple bonds are collated in section 6. Although not catalytic in the phosphine, the formation of ylides through the nucleophilic addition of phosphines to carbon-carbon multiple bond-containing compounds is intimately related to the catalysis and is discussed in section 7. Finally, section 8 compiles miscellaneous topics, including annulations of the Hüisgen zwitterion, phosphine-mediated reductions, iminophosphorane organocatalysis, and catalytic variants of classical phosphine oxide-generating reactions.
Collapse
Affiliation(s)
- Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Chiao Fan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Zhanhu Sun
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yang Wu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
26
|
Xu Q, Dupper NJ, Smaligo AJ, Fan YC, Cai L, Wang Z, Langenbacher AD, Chen JN, Kwon O. Catalytic Enantioselective Synthesis of Guvacine Derivatives through [4 + 2] Annulations of Imines with α-Methylallenoates. Org Lett 2018; 20:6089-6093. [PMID: 30246538 PMCID: PMC6173629 DOI: 10.1021/acs.orglett.8b02489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
P-Chiral [2.2.1] bicyclic phosphines (HypPhos catalysts) have been applied to reactions between α-alkylallenoates and imines, producing guvacine derivatives. These HypPhos catalysts were assembled from trans-4-hydroxyproline, with the modular nature of the synthesis allowing variations of the exocyclic P and N substituents. Among them, exo-( p-anisyl)-HypPhos was most efficacious for [4 + 2] annulations between ethyl α-methylallenoate and imines. Through this method, ( R)-aplexone was identified as being responsible for the decrease in the cellular levels of cholesterol.
Collapse
Affiliation(s)
- Qihai Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Nathan J. Dupper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Yi Chiao Fan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Lingchao Cai
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Zhiming Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| | - Adam D. Langenbacher
- Department of Molecular Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jau-Nian Chen
- Department of Molecular Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569
| |
Collapse
|
27
|
Theoretical insight into phosphoric acid-catalyzed asymmetric conjugate addition of indolizines to α,β-unsaturated ketones. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Xing JJ, Gao YN, Shi M. Phosphine-Initiated Cascade Annulation of β′-Acetoxy Allenoate and p
-Quinols: Access to Ring Fused Hexahydroindeno Furan Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiao-Jiao Xing
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yu-Ning Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory and Institute of Elemento-organic Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
29
|
Optically active helical polyisocyanides bearing chiral phosphine pendants: Facile synthesis and application in enantioselective Rauhut-Currier reaction. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2044-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Wang Z, Wang T, Yao W, Lu Y. Phosphine-Catalyzed Enantioselective [4 + 2] Annulation of o-Quinone Methides with Allene Ketones. Org Lett 2017; 19:4126-4129. [DOI: 10.1021/acs.orglett.7b01936] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen Wang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Tianli Wang
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Weijun Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yixin Lu
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, P. R. China
| |
Collapse
|
31
|
Li H, Lu Y. Enantioselective Construction of All-Carbon Quaternary Stereogenic Centers by Using Phosphine Catalysis. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700220] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huilin Li
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Yixin Lu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
- National University of Singapore (Suzhou); Research Institute; 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
32
|
Wang Z, Xu H, Su Q, Hu P, Shao PL, He Y, Lu Y. Enantioselective Synthesis of Tetrahydropyridines/Piperidines via Stepwise [4 + 2]/[2 + 2] Cyclizations. Org Lett 2017; 19:3111-3114. [DOI: 10.1021/acs.orglett.7b01221] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Wang
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Huacheng Xu
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Qin Su
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Ping Hu
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Pan-Lin Shao
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Yun He
- School
of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, P.R. China
| | - Yixin Lu
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, P.R. China
| |
Collapse
|
33
|
Satpathi B, Wagulde SV, Ramasastry SSV. An enantioselective organocatalytic intramolecular Morita–Baylis–Hillman (IMBH) reaction of dienones, and elaboration of the IMBH adducts to fluorenones. Chem Commun (Camb) 2017; 53:8042-8045. [DOI: 10.1039/c7cc02524f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient synthesis of cyclopenta-fused arenes and heteroarenes has been achieved via an enantioselective organocatalytic intramolecular Morita–Baylis–Hillman (IMBH) reaction of dienones. The IMBH-adducts were transformed to fluorenones in a serendipitous manner.
Collapse
Affiliation(s)
- Bishnupada Satpathi
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| | - Siddhant V. Wagulde
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| | - S. S. V. Ramasastry
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| |
Collapse
|