1
|
Zhang H, Gao X, Dai WQ, Cui N, Liu JQ, Wang MG, Zhou YF, Fang LX, Sun J, Jiang GB, Liao XP. Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing. Int J Biol Macromol 2025; 300:140219. [PMID: 39855504 DOI: 10.1016/j.ijbiomac.2025.140219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP). When loaded with 5 mg/mL of lutein, the 5Lutein/CPT hydrogel showed suitable swelling ratio, degradation rate, stability and biocompatibility. The hydrogel dressing demonstrates excellent self-healing behavior (≤20 s) and effectively extends the service life of the dressing. Importantly, this hydrogel displays pH-responsive drug release characteristics to meet the needs of the wound healing process. Specifically, under alkaline conditions (the initial stage of wound healing), TA and lutein are simultaneously released for synergistic antioxidant use in scavenging reactive oxygen species (ROS) and resolving inflammation. Under acidic conditions (late stage of wound healing), lutein is released to facilitate collagen formation. Additionally, the hydrogels demonstrated excellent antimicrobial (E. coli, S. aureus, and MRSA) activity and anti-biofilm ability. Animal experiments have shown that the 5Lutein/CPT hydrogel can promote wound closure, collagen fiber generation, angiogenesis and anti-inflammation. In conclusion, 5Lutein/CPT hydrogel dressings hold potential as candidate materials for promoting diabetic wound healing. Moreover, this study provides novel insights into the combined use of natural plant antioxidants in CMC-based hydrogel dressings to treat chronic wounds.
Collapse
Affiliation(s)
- Hongyan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin Gao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Qing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun-Qi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ge Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
3
|
Qi T, Liu X, Zheng N, Huang J, Xiang W, Nie Y, Guo Z, Cai B. Self-Healable, Antimicrobial and Conductive Hydrogels Based on Dynamic Covalent Bonding with Silver Nanoparticles for Flexible Sensor. Polymers (Basel) 2024; 17:54. [PMID: 39795457 PMCID: PMC11723201 DOI: 10.3390/polym17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups. The hybrid hydrogels exhibited sol-gel transition, self-healable, injectable and thermo-responsive abilities. The self-healing efficiency was over 92%. Moreover, the hydrogel displayed antimicrobial properties and high conductivity (6.85 S/m). Notably, the fabricated hydrogel-based sensors exhibited strain and temperature sensing (22.05%/°C) and could detect human motion and speech, and electrocardiographic (ECG) and electromyography (EMG) signals. Overall, this work provides a simple strategy to synthesize AgNPs-based dynamic hydrogels with multi-functions, and the hydrogels may find potential applications in antibacterial wearable electronics, health monitoring and speech recognition.
Collapse
Affiliation(s)
- Te Qi
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Xuefeng Liu
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Nan Zheng
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Jie Huang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Wenlong Xiang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Yujin Nie
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Zanru Guo
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Baixue Cai
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China
| |
Collapse
|
4
|
Wang Y, Tang S, Jiang L, Yuan Z, Zhang Y. A review of lignin application in hydrogel dressing. Int J Biol Macromol 2024; 281:135786. [PMID: 39366610 DOI: 10.1016/j.ijbiomac.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the most abundant natural aromatic polymer in the world. Currently, researchers have developed a number of lignin-based composite materials that are widely used in various fields, including industry, agriculture and medicine. Especially in recent years, lignin has attracted great interest as a high-value product for biomedical applications. Due to its antioxidant, antibacterial, adhesive and other properties, lignin is a promising candidate for the development of hydrogel dressings. However, there is no comprehensive overview of the application of lignin-based hydrogel dressings. In this review, lignin-based hydrogel skin dressings were first presented, and the preparation methods of physical and chemical crosslinking in lignin-based hydrogel dressings were discussed. In addition, various functional and environmentally responsive lignin-based hydrogel dressings were primarily reviewed. Finally, the prospects for the development of novel multifunctional lignin-based hydrogel dressings in the future were presented. In conclusion, this review provided a timely and comprehensive summary of the latest advances in the use of lignin as a biomaterial for hydrogel dressings, which would provide valuable guidance for the further development of lignin-based hydrogels.
Collapse
Affiliation(s)
- Yuqing Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
5
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Xie F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr Polym 2024; 337:122116. [PMID: 38710566 DOI: 10.1016/j.carbpol.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.
Collapse
Affiliation(s)
- Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
8
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
9
|
Pourshahrestani S, Zeimaran E, Fauzi MB. Antibacterial polylysine-containing hydrogels for hemostatic and wound healing applications: preparation methods, current advances and future perspectives. Biomater Sci 2024; 12:3293-3320. [PMID: 38747970 DOI: 10.1039/d3bm01792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The treatment of various types of wounds such as dermal wounds, multidrug resistant bacteria-infected wounds, and chronic diabetic wounds is one of the critical challenges facing healthcare systems. Delayed wound healing can impose a remarkable burden on patients and health care professionals. In this case, given their unique three-dimensional porous structure, biocompatibility, high hydrophilicity, capability to provide a moist environment while absorbing wound exudate, permeability to both gas and oxygen, and tunable mechanical properties, hydrogels with antibacterial function are one of the most promising candidates for wound healing applications. Polylysine is a cationic polymer with the advantages of inherent antibacterial properties, biodegradability, and biocompatibility. Therefore, its utilization to engineer antibacterial hydrogels for accelerating wound healing is of great interest. In this review, we initially discuss polylysine properties, and then focus on the most recent advances in polylysine-containing hydrogels (since 2016) prepared using various chemical and physical crosslinking methods for hemostasis and wound healing applications. Finally, the challenges and future directions in the engineering of these antibacterial hydrogels for wound healing are discussed.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ehsan Zeimaran
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
10
|
Zhang X, Mu Y, Zhao L, Hong Y, Shen L. Self-healing, antioxidant, and antibacterial Bletilla striata polysaccharide-tannic acid dual dynamic crosslinked hydrogels for tissue adhesion and rapid hemostasis. Int J Biol Macromol 2024; 270:132182. [PMID: 38723806 DOI: 10.1016/j.ijbiomac.2024.132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Biomaterials capable of achieving effective sealing and hemostasis at moist wounds are in high demand in the clinical management of acute hemorrhage. Bletilla striata polysaccharide (BSP), a natural polysaccharide renowned for its hemostatic properties, holds promising applications in biomedical fields. In this study, a dual-dynamic-bonds crosslinked hydrogel was synthesized via a facile one-pot method utilizing poly(vinyl alcohol) (PVA)-borax as a matrix system, followed by the incorporation of BSP and tannic acid (TA). Chemical borate ester bonds formed around borax, coupled with multiple physical hydrogen bonds between BSP and other components, enhanced the mechanical properties and rapid self-healing capabilities. The catechol moieties in TA endowed the hydrogel with excellent adhesive strength of 30.2 kPa on the surface of wet tissues and facilitated easy removal without residue. Benefiting from the synergistic effect of TA and the preservation of the intrinsic properties of BSP, the hydrogel exhibited outstanding biocompatibility, antibacterial, and antioxidant properties. Moreover, it effectively halted acute bleeding within 31.3 s, resulting in blood loss of 15.6 % of that of the untreated group. As a superior hemostatic adhesive, the hydrogel in this study is poised to offer a novel solution for addressing future acute hemorrhage, wound healing, and other biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| |
Collapse
|
11
|
Wang S, Jiao C, Gerlach G, Körner J. Porosity Engineering of Dried Smart Poly( N-isopropylacrylamide) Hydrogels for Gas Sensing. Biomacromolecules 2024; 25:2715-2727. [PMID: 38047737 PMCID: PMC11094736 DOI: 10.1021/acs.biomac.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.
Collapse
Affiliation(s)
- Sitao Wang
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Chen Jiao
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Gerald Gerlach
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Julia Körner
- Institute
of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
12
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
14
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
15
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
16
|
Dalei G, Jena D, Das BR, Das S. Bio-valorization of Tagetes floral waste extract in fabrication of self-healing Schiff-base nanocomposite hydrogels for colon cancer remedy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4330-4347. [PMID: 38097839 DOI: 10.1007/s11356-023-31392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
The drastic boom in floriculture and social events in religious and recreational places has inevitably led to generation of tremendous floral waste across the globe. Marigold (Tagetes erecta) is one of the most common loose flowers offered for the same. Generally discarded, these Tagetes floral wastes could be valorized for biogenic syntheses. In this study, we have utilized the floral extract towards green synthesis of nano ZnO, the formation of which was affirmed from different analytical techniques. Bionanocomposite Schiff-base hydrogel composed of chitosan and dialdehyde pectin was fabricated by the facile strategy of in situ polymer cross-linking, and the ZnO nanoparticles were embedded in the hydrogel matrix. The hydrogel exhibited remarkable self-healing ability. The antioxidant and anti-inflammatory activities were enhanced owing to nano ZnO. Furthermore, it was hemocompatible and biodegradable. A controlled release drug profile for 5-fluorouracil from the hydrogel was accomplished in the colorectum. The exposure of the drug-loaded nanocomposite hydrogel demonstrated improved anticancer effects in HT-29 colon cancer cells. The findings of this study altogether put forth the successful biovalorization of Tagetes floral waste extract for colon cancer remedy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Debasish Jena
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India.
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India.
| |
Collapse
|
17
|
Yang M, Tian J, Zhang K, Fei X, Yin F, Xu L, Wang Y, Li Y. Bioinspired Adhesive Antibacterial Hydrogel with Self-Healing and On-Demand Removability for Enhanced Full-Thickness Skin Wound Repair. Biomacromolecules 2023; 24:4843-4853. [PMID: 37801393 DOI: 10.1021/acs.biomac.3c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Adhesive-caused injury is a great threat for extensive full-thickness skin trauma because extra-strong adhesion can incur unbearable pain and exacerbate trauma upon removal. Herein, inspired by the mussel, we designed and fabricated an adhesive antibacterial hydrogel dressing based on dynamic host-guest interaction that enabled on-demand stimuli-triggered removal to effectively care for wounds. In contrast with most hard-to-removable dressing, this adhesive antibacterial hydrogel exhibited strong adhesion property (85 kPa), which could achieve painless and noninvasive on-demand separation within 2 s through a host-guest competition mechanism (amantadine). At the same time, the hydrogel exhibited rapid self-healing properties, and the broken hydrogel could be completely repaired within 5 min. The hydrogel also had excellent protein adsorption properties, mechanical properties, antibacterial properties, and biocompatibility. This on-demand removal was facilitated by the introduction of amantadine as a competitive guest, without any significant adverse effects on cell activity (>90%) or wound healing (98.5%) in vitro. The full-thickness rat-skin defect model and histomorphological evaluation showed that the hydrogel could significantly promote wound healing and reduce scar formation by regulating inflammation, accelerating skin re-epithelialization, and promoting granulation tissue formation. These results indicate that the developed adhesive antibacterial hydrogel offers a promising therapeutic strategy for the healing of extensive full-layer skin injuries.
Collapse
Affiliation(s)
- Minwei Yang
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaiwen Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
| | - Longquan Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
19
|
Tadesse MG, Lübben JF. Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review. Gels 2023; 9:gels9030250. [PMID: 36975699 PMCID: PMC10048157 DOI: 10.3390/gels9030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Flexible electronics have gained significant research attention in recent years due to their potential applications as smart and functional materials. Typically, electroluminescence devices produced by hydrogel-based materials are among the most notable flexible electronics. With their excellent flexibility and their remarkable electrical, adaptable mechanical and self-healing properties, functional hydrogels offer a wealth of insights and opportunities for the fabrication of electroluminescent devices that can be easily integrated into wearable electronics for various applications. Various strategies have been developed and adapted to obtain functional hydrogels, and at the same time, high-performance electroluminescent devices have been fabricated based on these functional hydrogels. This review provides a comprehensive overview of various functional hydrogels that have been used for the development of electroluminescent devices. It also highlights some challenges and future research prospects for hydrogel-based electroluminescent devices.
Collapse
Affiliation(s)
- Melkie Getnet Tadesse
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 1037, Ethiopia
| | - Jörn Felix Lübben
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
| |
Collapse
|
20
|
Karvinen J, Kellomäki M. Characterization of self-healing hydrogels for biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Vu ND, Crozzolo J, Guérinot A, Nicolaÿ R. Injectable and Self-Healing Thiazolidine-Crosslinked Hydrogels: Synthesis and Characterization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Nam Duc Vu
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| | - Julien Crozzolo
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| | - Renaud Nicolaÿ
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
22
|
Duceac IA, Coseri S. Chitosan Schiff-Base Hydrogels-A Critical Perspective Review. Gels 2022; 8:gels8120779. [PMID: 36547302 PMCID: PMC9777561 DOI: 10.3390/gels8120779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Chitosan is quite a unique polysaccharide due to the presence of the amine groups naturally occurring in its structure. This feature renders it into a polycation which makes it appealing for preparing polyelectrolyte complexes or imine bonds gels. Therefore, the vast majority of hydrogels prepared using Schiff base chemistry have chitosan as one component. Usually, the counterpart is a low molecular weight aldehyde or a macromolecular periodate-oxidized polysaccharide, i.e., cellulose, pullulan, starch, alginate, hyaluronic acid, etc. Indisputable advantages of hydrogels include their quick gelation, no need for crosslinking agents, and self-healing and injectability properties. This gives grounds for further research, both fundamental in materials science and applicative in various domains. This article is a critical assessment of the most relevant aspects of this topic. It also provides a short review of some of the most interesting research reported in the literature supporting the main observations of this perspective.
Collapse
|
23
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
24
|
Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery. BIOMATERIALS ADVANCES 2022; 139:212992. [PMID: 35882141 DOI: 10.1016/j.bioadv.2022.212992] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 02/08/2023]
Abstract
Great efforts have been performed on the production of advanced biomaterials with the combination of self-healing and wound healing properties in implant/tissue engineering biomedical area. Inspired by this idea, chitosan (CHI) based hydrogels can be used to treat a less investigated class of harmful chronic wounds: ulcers or pressure ulcers. Thus, CHI was crosslinked with previously synthesized polyethylene glycol diacid (PEG-diacid) to obtain different CHI-PEG hydrogel formulations with high H-bonding tendency resulting in self-repair ability. Here presented results show biocompatible, antibacterial, anti-inflammatory, and self-healing CHI-PEG hydrogels with a promising future in the treatment of ulcerated wounds by a significant improvement in metabolic activity (94.51 ± 4.38 %), collagen and elastin quantities (2.12 ± 0.63 μg collagen and 4.97 ± 0.61 μg elastin per mg dermal tissue) and histological analysis. Furthermore, cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) antibiotics, and acetylsalicylic acid (ASA) anti-inflammatory agent were sustainedly released for enhancing antibacterial and anti-inflammatory activities of hydrogels.
Collapse
|
25
|
Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels. Gels 2022; 8:gels8080477. [PMID: 36005079 PMCID: PMC9407353 DOI: 10.3390/gels8080477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
In situ-forming, biodegradable, and self-healing hydrogels, which maintain their integrity after damage, owing to dynamic interactions, are essential biomaterials for bioapplications, such as tissue engineering and drug delivery. This work aims to develop in situ, biodegradable and self-healable hydrogels based on dynamic covalent bonds between N-succinyl chitosan (S-CHI) and oxidized aldehyde hyaluronic acid (A-HA). A robust effect of the molar ratio of both S-CHI and A-HA was observed on the swelling, mechanical stability, rheological properties and biodegradation kinetics of these hydrogels, being the stoichiometric ratio that which leads to the lowest swelling factor (×12), highest compression modulus (1.1·10−3 MPa), and slowest degradation (9 days). Besides, a rapid (3 s) self-repairing ability was demonstrated in the macro scale as well as by rheology and mechanical tests. Finally, the potential of these biomaterials was evidenced by cytotoxicity essay (>85%).
Collapse
|
26
|
Janarthanan G, Kim JH, Kim IG, Lee C, Chung EJ, Noh I. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Biofabrication 2022; 14. [PMID: 35504259 DOI: 10.1088/1758-5090/ac6c4c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
3D bioprinting of self-supporting stable tissue and organ structure is critically important in extrusion-based bioprinting system, especially for tissue engineering and regenerative medicine applications. However, the development of self-standing bioinks with desired crosslinking density, biocompatibility, tunable mechanical strength and other properties like self-healing, in situ gelation, drug or protein incorporation is still a challenge. In this study, we report a hydrogel bioink prepared from alginate (Alg) and hyaluronic acid (HA) crosslinked through multiple crosslinking mechanisms, i.e., acyl-hydrazone, hydrazide interactions and calcium ions. These Alg-HA gels were highly dynamic and shear-thinning with exceptional biocompatibility and tunable mechanical properties. The increased dynamic nature of the gels is mainly chemically attributed to the presence of acyl-hydrazone bonds formed between the amine groups of the acyl-hydrazide of alginate and the monoaldehyde of the hyaluronic acid. Among the different combinations of Alg-HA gel compositions prepared, the A5H5 (Alginate-acyl-hydrazide: HA-monoaldehyde, ratio 50:50) one showed a gelation time of ~60 s, viscosity of ~400 Pa.s (at zero shear rate), high stability in various pH solutions and increased degradation time (>50 days) than the other samples. The A5H5 gels showed high printability with increased post-printing stability as observed from the 3D printed structures (e.g., hollow tube (~100 layers), porous cube (~50 layers), star, heart-in, meniscus and lattice). The scanning electron microscopy analysis of the 3D constructs and hydrogels showed the interconnected pores (~181 µm) and crosslinked networks. Further, the gels showed sustained release of 5-amino salicylic acid and bovine serum albumin. Also, the mechanical properties were tuned by secondary crosslinking via different calcium concentrations. In vitro assays confirmed the cytocompatibility of these gels, where the 3D bioprinted lattice and tubular (~70 layers) constructs demonstrated high cell viability under fluorescence analysis. In in vivo studies, Alg-HA gel showed high biocompatibility (>90%) and increased angiogenesis (3 folds) and reduced macrophage infiltration (2-fold decrease), demonstrating the promising potential of these hydrogels in 3D bioprinting applications for tissue engineering and regenerative medicine with tunable properties.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Dept of chemical and biomolecular engineering, Seoul National University of Science and Technology, Seoul National University of Science and Technology (Seoul Tech), 223-1, 6-Chungun Hall, Gongneung-ro 232, Nowon-Gu, Seoul 01811, Nowon-gu, 01811, Korea (the Republic of)
| | - Jung Hyun Kim
- Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Chung Hall 223-1, Nowon-gu, Seoul, 01811, Korea (the Republic of)
| | - In-Gul Kim
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Chibum Lee
- Mechanical System Design Engineering, Seoul National University of Science and Technology, Frontier Bldg, RM904, 232 Gongreung-Ro, Nowon-Gu, Seoul, 01811, Korea (the Republic of)
| | - Eun-Jae Chung
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Jongno-gu, 03080, Korea (the Republic of)
| | - Insup Noh
- Department of Chemical Engineering, Seoul National University of Science and Technology, 172 Gongnung-dong,, Nowon-gu, Seoul, 139-743, Korea, Nowon-gu, 01811, Korea (the Republic of)
| |
Collapse
|
27
|
Takács T, Abdelghafour MM, Lamch Ł, Szenti I, Sebők D, Janovák L, Kukovecz Á. Facile modification of hydroxyl group containing macromolecules provides autonomously self-healing polymers through the formation of dynamic Schiff base linkages. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Yuan L, Li Z, Li X, Qiu S, Lei J, Li D, Mu C, Ge L. Functionalization of an Injectable Self-Healing pH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS APPLIED POLYMER MATERIALS 2022. [DOI: 10.1021/acsapm.1c01637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zijing Li
- Panxi Institute of Vanadium and Titanium Inspection and Testing/National Quality Inspection Center of Vanadium and Titanium Products, Panzhihua 617000, Sichuan, China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
29
|
Liao H, Zhong W, Li T, Han J, Sun X, Tong X, Zhang Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Li G, Li C, Li G, Yu D, Song Z, Wang H, Liu X, Liu H, Liu W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101518. [PMID: 34658130 DOI: 10.1002/smll.202101518] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels can be prepared by incorporating various conductive materials into polymeric network hydrogels. In recent years, conductive hydrogels have been developed and applied in the field of strain sensors owing to their unique properties, such as electrical conductivity, mechanical properties, self-healing, and anti-freezing properties. These remarkable properties allow conductive hydrogel-based strain sensors to show excellent performance for identifying external stimuli and detecting human body movement, even at subzero temperatures. This review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes. Finally, a brief prospectus for the development of conductive hydrogels in the future is provided.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Chenglong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan (iAIR), Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| |
Collapse
|
31
|
Wu H, Chen J, Kim J, Zhu P, Zhu J, Gao Q, Gao C. Facile preparation of transparent poly (γ‐glutamic acid) modified poly (vinyl alcohol) hydrogels with high tensile strength and toughness. J Appl Polym Sci 2022. [DOI: 10.1002/app.52204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hailin Wu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jing Chen
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | | | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jiadeng Zhu
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Qiang Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| |
Collapse
|
32
|
Wang JT, Pei YY, Qu CH, Wang Y, Rong X, Niu XY, Wang J, Li QF. Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. Int J Biol Macromol 2022; 195:530-537. [PMID: 34920063 DOI: 10.1016/j.ijbiomac.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/05/2022]
Abstract
Luminescent hydrogels show extensive applications in many fields because of their excellent optical properties. Although there are many matrixes used to prepare luminescent hydrogels, the synthesis of protein-based luminescent hydrogels is still urgently needed to explore due to their good biodegradability and biocompatibility. In this work, a color-tunable, self-healing protein-based luminescent hydrogel consisting of bovine serum albumin (BSA) and lanthanide complexes is prepared via reductant-triggered gelation. Firstly, a bifunctional organic ligand named 4-(phenylsulfonyl)-pyridine-2,6-dicarboxylic acid (4-PSDPA) is synthesized, which can react with thiol groups and effectively sensitize the luminescence of Eu3+ and Tb3+ ions. Then, the BSA is treated with a reducing agent tris(2-carboxyethyl)phosphine (TCEP) to produce thiol groups. And the newly formed thiol groups can re-match to form disulfide bonds between two BSA molecules or react with Ln(4-PSDPA)3 complexes, resulting in the formation of an albumin-based luminescent hydrogel. Furthermore, the self-healing, biodegradability and biocompatibility of albumin-based hydrogels have also been demonstrated. We expect that the newly developed multifunctional protein-based hydrogels will find potential applications in the fields of biomedical engineering and optical devices.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Ying-Ying Pei
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Cong-Hui Qu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Yi Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Xing Rong
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Xin-Yue Niu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, PR China.
| | - Qing-Feng Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, PR China.
| |
Collapse
|
33
|
Zhang X, Tang Y, Wang P, Wang Y, Wu T, Li T, Huang S, Zhang J, Wang H, Ma S, Wang L, Xu W. A review of recent advances in metal ion hydrogels: mechanism, properties and their biological applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj02843c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms, common properties and biological applications of different types of metal ion hydrogels are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Puying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanyan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tingting Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shuo Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
34
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
35
|
Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. Eur J Pharm Biopharm 2021; 171:50-59. [PMID: 34793943 DOI: 10.1016/j.ejpb.2021.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
The treatment of unhealable and chronic cutaneous wounds is a significant challenge for the healthcare system. Hence, there has been heightened interest in the development of innovative therapeutic approaches for the acceleration of wound healing. Regenerative medicine based on mesenchymal stem cells (MSCs) has shown appropriate potential in skin repair. The regenerative properties of stem cells are mainly attributed to paracrine effects of secreted products, including exosomes. There are advantages to using exosomes as a cell-free approach instead of direct application of stem cells. Exosomes have nanoscale dimension and are immune-tolerant, Exosomes have the nanoscale dimension and are immune-tolerant. They can easily endocytose, and transfer the cargo content to recipient cells. They contribute to the regulation of the wound healing process by activating specific signaling pathways. To preserve exosome bioactivity and controlled release of effective concentration during prolonged wound care, the design of an optimized delivery system is necessary. Accordingly, hydrogels with their unique properties are promising candidates as exosome delivery and wound management products. This article investigates the characteristics of exosomes, their molecular mechanism in wound healing, and the advantages of the hydrogel delivery system. Also, published reports on the potential of exosome-loaded hydrogels in skin regeneration have been reviewed.
Collapse
Affiliation(s)
- Banafsheh Safari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Devi V. K. A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021; 13:3782. [PMID: 34771338 PMCID: PMC8587783 DOI: 10.3390/polym13213782] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ''smart self-healing hydrogels'' which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel's mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rohin Shyam
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arputharaj Joseph Nathanael
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| |
Collapse
|
37
|
|
38
|
Recent Advancements in 3D Printing and Bioprinting Methods for Cardiovascular Tissue Engineering. Bioengineering (Basel) 2021; 8:bioengineering8100133. [PMID: 34677206 PMCID: PMC8533407 DOI: 10.3390/bioengineering8100133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Recent decades have seen a plethora of regenerating new tissues in order to treat a multitude of cardiovascular diseases. Autografts, xenografts and bioengineered extracellular matrices have been employed in this endeavor. However, current limitations of xenografts and exogenous scaffolds to acquire sustainable cell viability, anti-inflammatory and non-cytotoxic effects with anti-thrombogenic properties underline the requirement for alternative bioengineered scaffolds. Herein, we sought to encompass the methods of biofabricated scaffolds via 3D printing and bioprinting, the biomaterials and bioinks recruited to create biomimicked tissues of cardiac valves and vascular networks. Experimental and computational designing approaches have also been included. Moreover, the in vivo applications of the latest studies on the treatment of cardiovascular diseases have been compiled and rigorously discussed.
Collapse
|
39
|
Shin M, Shin SH, Lee M, Kim HJ, Jeong JH, Choi YH, Oh DX, Park J, Jeon H, Eom Y. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Heidarian P, Kaynak A, Paulino M, Zolfagharian A, Varley RJ, Kouzani AZ. Dynamic nanocellulose hydrogels: Recent advancements and future outlook. Carbohydr Polym 2021; 270:118357. [PMID: 34364602 DOI: 10.1016/j.carbpol.2021.118357] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Nanocellulose is of great interest in material science nowadays mainly because of its hydrophilic, renewable, biodegradable, and biocompatible nature, as well as its excellent mechanical strength and tailorable surface ready for modification. Currently, nanocellulose is attracting attention to overcome the current challenges of dynamic hydrogels: robustness, autonomous self-healing, and self-recovery (SELF) properties simultaneously occurring in one system. In this regard, this review aims to explore current advances in design and fabrication of dynamic nanocellulose hydrogels and elucidate how incorporating nanocellulose with dynamic motifs simultaneously improves both SELF and robustness of hydrogels. Finally, current challenges and prospects of dynamic nanocellulose hydrogels are discussed.
Collapse
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Akif Kaynak
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Mariana Paulino
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
41
|
Liu C, Ma Y, Guo S, He B, Jiang T. Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence. Biomater Sci 2021; 9:4356-4363. [PMID: 34127987 DOI: 10.1039/d0bm01766c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Residual microtumours after surgical resection leading to tumour relapse is one of the major challenges for cancer therapy. Herein, we developed a nano-hybrid oligopeptide hydrogel for topical delivery of a chemotherapeutic drug, docetaxel (DTX), to inhibit the post-surgical tumour recurrence. This nano-hybrid hydrogel (DTX-CTs/Gel) was prepared by encapsulating DTX in cell-penetrating peptide-modified transfersomes followed by embedment in an oligopeptide hydrogel. The obtained DTX-CTs/Gel showed paintable and injectable properties, and could support prolonged retention at the administrated sites after topical administration. DTX-CTs released from the hydrogel presented high skin and tumour penetration capabilities, and increased the accumulation of DTX in the cancer cells leading to enhanced cell death. We showed that the topical delivery of DTX using DTX-CTs/Gel efficiently slowed down the tumour relapse in post-surgical mouse melanoma and breast tumour models.
Collapse
Affiliation(s)
- Chendan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Song Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
42
|
Park SG, Li MX, Cho WK, Joung YK, Huh KM. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydr Polym 2021; 260:117808. [PMID: 33712154 DOI: 10.1016/j.carbpol.2021.117808] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.
Collapse
Affiliation(s)
- Seul Gi Park
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
43
|
Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021; 9:18. [PMID: 33727543 PMCID: PMC7966774 DOI: 10.1038/s41413-021-00139-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Bone tumors, especially those in osteosarcoma, usually occur in adolescents. The standard clinical treatment includes chemotherapy, surgical therapy, and radiation therapy. Unfortunately, surgical resection often fails to completely remove the tumor, which is the main cause of postoperative recurrence and metastasis, resulting in a high mortality rate. Moreover, bone tumors often invade large areas of bone, which cannot repair itself, and causes a serious effect on the quality of life of patients. Thus, bone tumor therapy and bone regeneration are challenging in the clinic. Herein, this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy. The selected bifunctional materials include 3D-printed scaffolds, nano/microparticle-containing scaffolds, hydrogels, and bone-targeting nanomaterials. Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed. Finally, a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed. This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering.
Collapse
Grants
- The National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), NSFC 31771096, NSFC 31930067, #x00A0;NSFC 31525009, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002)
- the National Natural Science Foundation (31972925), Sichuan Science and Technology Program (2020YJ0065), Sichuan University Spark Project (2018SCUH0029), State Key Laboratory of Oral Diseases Foundation (SKLOD202016)
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruxia Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
44
|
Sun W, Hu Y, Cheng Y, Yang S, Kang Z. Effect of cross-linking methods on stress relaxation of PVA/PAM-co-PAA-based hydrogels. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1889739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weirui Sun
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yinchun Hu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yizhu Cheng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Sen Yang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhiqin Kang
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
45
|
Wang HJ, Chu YZ, Chen CK, Liao YS, Yeh MY. Preparation of conductive self-healing hydrogels via an interpenetrating polymer network method. RSC Adv 2021; 11:6620-6627. [PMID: 35423172 PMCID: PMC8694894 DOI: 10.1039/d0ra09476e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Conductive self-healing hydrogels and related soft sensor devices are gaining extensive attention from academia to industry because of their impacts on the lifetime and ergonomic design of artificial skins and soft robotics, as well as health monitoring systems. However, so far the development of such a material has been limited considering performance and availability. In this work, we developed composite hydrogels of acrylamide, polyacrylamide, dialdehyde-functionalized poly(ethylene glycol) and conductive carbon black through an interpenetrating polymer network strategy. After optimizing the composition ratio, the resultant hydrogel exhibited self-healing reversibility mechanically and electrically when cut and self-healed. We used 1H NMR and FT-IR spectroscopy to determine the self-healing mechanism of the system, thus demonstrating that the cooperative effect of the dynamic covalent and noncovalent interactions contributes to the self-healing capability of the gel. Rheology, scanning electron microscopy and light-emitting diode circuits were carried out to examine its macroscopic and microscopic properties, making it possible to apply in soft and conformable electronics. A new type of conductive interpenetrating polymer network hydrogel exhibited self-healing reversibility mechanically and electrically when cut and self-healed, making it possible to apply in soft and conformable electronics.![]()
Collapse
Affiliation(s)
- Huan-Jung Wang
- Department of Chemistry, Chung Yuan Christian University 200 Chung Pei Road, Chung-Li Taiwan
| | - Yi-Zuo Chu
- Department of Chemistry, Chung Yuan Christian University 200 Chung Pei Road, Chung-Li Taiwan
| | - Chen-Kang Chen
- Department of Chemistry, Chung Yuan Christian University 200 Chung Pei Road, Chung-Li Taiwan
| | - Yi-Shun Liao
- Department of Chemistry, Chung Yuan Christian University 200 Chung Pei Road, Chung-Li Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University 200 Chung Pei Road, Chung-Li Taiwan
| |
Collapse
|
46
|
Sun H, Zhang M, Liu M, Yu Y, Xu X, Li J. Fabrication of Double-Network Hydrogels with Universal Adhesion and Superior Extensibility and Cytocompatibility by One-Pot Method. Biomacromolecules 2020; 21:4699-4708. [PMID: 33075226 DOI: 10.1021/acs.biomac.0c00822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogels, which demand simultaneously tailorable mechanical properties and excellent biocompatibility, act as a promoting material for biomedical applications, e.g., tissue engineering scaffolds, wound dressing materials, and cartilage substitutes. Double-network hydrogels (DN hydrogels) have attracted widespread concerns due to their extraordinary mechanical strength and toughness, while traditional DN hydrogels are limited in terms of their biofunctionality. Based on the DN hydrogels composed of agar and acrylamide (AM), we incorporate vinylphosphoric acid (VPA) into the network to obtain agar/PAM/PVPA hydrogels with universal adhesion and superior cytocompatibility. Meanwhile, the agar/PAM/PVPA hydrogel maintains its high strength and toughness. It is noted that the elongation of the agar/PAM/PVPA hydrogel (molar ratio of VPA is 2%) is up to 3418.9 ± 54.9%. The cell experiment also demonstrates that the addition of VPA in a proper concentration can promote cell adhesion and proliferation. Furthermore, the hydrogel has the potential to be used as 3D printing and injectable materials because of the thermoreversible sol-gel agar. The reported agar/PAM/PVPA hydrogel in this work with universal adhesion, excellent mechanical properties, and excellent cytocompatibility is able to be used for biomedical applications as scaffolds, wound dressing materials, or cartilage repair materials.
Collapse
Affiliation(s)
- Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meiling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Wu Y, Zhang X, Zhao Q, Tan B, Chen X, Liao J. Role of Hydrogels in Bone Tissue Engineering: How Properties Shape Regeneration. J Biomed Nanotechnol 2020; 16:1667-1686. [PMID: 33485397 DOI: 10.1166/jbn.2020.2997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone defect that resulted from trauma, tumors, and other reasons is believed as a common clinical problem, which exists mainly in post-traumatic healing. Additionally, autologous/allogeneic transplantation, bone tissue engineering attracts increasing attention due to the existing problem of the limited donor. The applications of biomaterials can be considered as a rising and promising strategy for bone regeneration. Especially, hydrogel is featured with hydrophilic characteristic, good biocompatibility, and porous structure, which shows unique properties for bone regeneration. The main properties of hydrogel such as surface property, adhesive property, mechanical property, porosity, and degradation property, generally present influences on the migration, proliferation, and differentiation of mesenchymal stem cells exclusively or in combination, which consequently affect the regeneration of bones. This review mainly focuses on the theme: "how properties of hydrogel shape bone regeneration." Moreover, the latest progress achieved in the above mentioned direction is further discussed. Despite the fascinating advances researchers have made, certain potential challenges continue to exist in the research field, which need to be addressed for accelerating the clinical translation of hydrogel in bone regeneration.
Collapse
|
48
|
Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2261. [PMID: 33019575 PMCID: PMC7600516 DOI: 10.3390/polym12102261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.
Collapse
Affiliation(s)
- Sheila Maiz-Fernández
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Jose Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
49
|
Jafarigol E, Salehi MB, Mortaheb HR. Preparation and assessment of electro-conductive poly(acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Nair R, Roy Choudhury A. Synthesis and rheological characterization of a novel shear thinning levan gellan hydrogel. Int J Biol Macromol 2020; 159:922-930. [DOI: 10.1016/j.ijbiomac.2020.05.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
|