1
|
Liu P, Shi C, Liu Y, Gai Z, Tian H, Yang F, Yang Y. Triple-signal strategy utilizing a colorimetric, fluorescence, and chromogenic paper-based sensor for rapid detection of ATP at neutral pH. Talanta 2025; 292:127976. [PMID: 40139008 DOI: 10.1016/j.talanta.2025.127976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
This study presents a novel triple signal amplification strategy for paper-based colorimetric/fluorescence/chromogenic detection of adenosine triphosphate (ATP). Fluorescent gold nanoclusters (BSA-AuNCs) induce a redshift in the absorbance of quercetin (QCT), and the paper substrate displays a yellow color. Simultaneously, BSA-AuNCs activated QCT to emit fluorescence through the surface plasmon resonance (SPR) effect, producing a strong fluorescence signal at 541 nm, while the red fluorescence of BSA-AuNCs at 636 nm remained stable, resulting in a yellowish-green fluorescence of the paper. Upon the addition of ATP, the absorbance appeared to blue shift, and the paper substrate transitioned from yellow to colorless within 30 s. Concurrently, the fluorescence intensity of QCT decreased significantly, while the fluorescence intensity of BSA-AuNCs at 636 nm was almost unchanged, leading the fluorescence of the paper substrate to gradually shift to red. The QCT/BSA-AuNC paper-based system functions as a dual-signal sensor, enabling rapid ATP detection through both colorimetric and fluorescence modes with limits of detection (LOD) of 0.72 μM and 0.68 μM, respectively. Additionally, ATP enhances the peroxidase-like catalytic activity of BSA-AuNCs, promoting the chromogenic reaction of TMB and turning the paper sensor dark blue, with a LOD of 0.43 μM. This triple signal amplification method enables sensitive ATP screening using paper-based test strips, providing high sensitivity, selectivity, and reliable quantitative results. Notably, this three-mode sensing strategy holds significant potential for development into a quantitative method for ATP detection in normal and tumor cell samples, aiding in cell identification.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Chuanwei Shi
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yeping Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhexu Gai
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Hao Tian
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
2
|
Ai Y, Man R, Cheng F, Zeng R, Huang Y, Hao Y, Chen S, Zhang P. Rational construction of a self-assembled nanoprobe for specific imaging ATP in cancer cells. Talanta 2025; 287:127668. [PMID: 39899934 DOI: 10.1016/j.talanta.2025.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/05/2025]
Abstract
Adenosine triphosphate (ATP) serves as the energy currency unit and plays a crucial role in various cellular processes. While many small molecule fluorescent probes have been successfully developed for detecting ATP, their biological applications have been limited due to the restrictions of specificity of ATP response and targeting cancer cells. This study introduces a novel self-assembled polymer fluorescent nanoprobe, RdB-DETA-HA NPs, specifically designed for the monitoring and imaging of ATP in live cancer cells. The nanoprobe integrates diethylenetriamine-linked rhodamine B as a fluorescence recognition moiety for ATP, covalently incorporated with hyaluronic acid (HA). This innovative design enhances water dispersibility, prevents dye leakage, and significantly improves cancer cell targeting via CD44 receptor-mediated endocytosis. Our results demonstrate the nanoprobe's exceptional ability to specifically target cancer cells and dynamically monitor ATP levels, marking a substantial advancement over traditional small molecule probes. The RdB-DETA-HA NPs show great promise for widespread applications in biomedical research and diagnostic imaging.
Collapse
Affiliation(s)
- Yihui Ai
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Ruolin Man
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Fenmin Cheng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Rongjin Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Peisheng Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
3
|
Wang J, Gao X, Ren J, Song B, Zhang W, Yuan J. A novel ratiometric luminescent probe based on a ruthenium(II) complex-rhodamine scaffold for ATP detection in cancer cells. Talanta 2025; 286:127538. [PMID: 39778491 DOI: 10.1016/j.talanta.2025.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology. Herein, we report a novel ratiometric luminescent probe, Ru-Rho, comprised of a ruthenium(II)-based complex and rhodamine 6G (Rho 6G) with excellent water solubility and photostability. Notably, Ru-Rho selectively responds to ATP at acidic conditions, matching the need of monitoring ATP under the acidic intracellular environment of cancer cells. Moreover, the fast ratiometric detection and imaging of ATP under single wavelength excitation improve the detection accuracy. Ru-Rho has been effectively utilized not only for ratio imaging ATP in cells and zebrafish, but also for assessing the efficacy of glycolysis-inhibiting anticancer drugs in intracellular levels, which accelerates the screening process for anticancer drugs and supports the development of new therapeutic agents. The design strategy based on transition metal ruthenium(II) complexes opens a new pathway for constructing ATP luminescent probes, allowing for better adaptation to complex detection requirements.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
4
|
Yu T, Li Y, Li J, Gan Y, Long Z, Deng Y, Zhang Y, Li H, Yin P, Yao S. Multifunctional Fluorescent Probe for Simultaneous Detection of ATP, Cys, Hcy, and GSH: Advancing Insights into Epilepsy and Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415882. [PMID: 39887673 PMCID: PMC11923924 DOI: 10.1002/advs.202415882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Adenosine triphosphate (ATP) is a critical intracellular energy currency that plays a key role in various cellular processes and is closely associated with numerous diseases. Similarly, biothiols such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are integral to many physiological and pathological processes due to their strong redox properties. Simultaneous discrimination and detection of ATP and biothiols offer valuable insights into the pathogenesis of conditions such as epilepsy and liver injury. This study introduces the first fluorescent probe, BCR, designed for multifunctional detection of ATP, GSH, Hcy, and Cys. With outstanding optical properties, excellent biocompatibility, high selectivity, and superior sensitivity, probe BCR enables effective imaging of ATP and biothiol dynamics in vivo. Moreover, probe BCR successfully visualizes changes in ATP, GSH, Hcy, and Cys levels in a PTZ-induced epileptic zebrafish model and an APAP-induced mouse liver injury tissue section model. These findings underscore the significant potential of probe BCR for early disease diagnosis and therapeutic applications.
Collapse
Affiliation(s)
- Ting Yu
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yang Li
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jing Li
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yabing Gan
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zhengze Long
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yun Deng
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Youyu Zhang
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Haitao Li
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Peng Yin
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
5
|
Anitha O, Ghorai S, Thiruppathiraja T, Amir H, Murugan A, Natarajan R, Lakshmipathi S, Viswanathan C, Jothi M, Murugesapandian B. Pyridine appended pyrimidine bis hydrazone: Zn 2+/ATP detection, bioimaging and functional properties of its dinuclear Zn(II) complex. Talanta 2024; 273:125900. [PMID: 38490021 DOI: 10.1016/j.talanta.2024.125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
A pyridine functionalized pyrimidine-based system, H2P was successfully synthesized, characterized, and evaluated for its remarkable selective characteristics towards Zn2+ and ATP ions. The chemical sensing capabilities of H2P were demonstrated through absorption, fluorescence, and NMR spectroscopic techniques. The probe exhibited outstanding sensitivity when interacting with the ions, demonstrating relatively strong association constants and impressively low detection limits. The comprehensive binding mechanism of H2P with respect to Zn2+ and ATP ions was investigated using a combination of analytical methods, including Job's plot, NMR spectroscopy, mass spectrometry, and density functional theory (DFT) experiments. The interesting sensing ability of H2P for Zn2+/ATP ions was harnessed for live cell bioimaging and other diverse on-site detection purposes, including paper strips, cotton swabs, and applications involving mung bean sprouts. Further, the fluorescent probe demonstrated its effectiveness in detecting Zn2+ and ATP within live cells, indicating its significant potential in the realm of biological imaging applications. Moreover, the molecular configuration of the zinc complex (H2P-Zn2Cl4), derived from H2P, was elucidated using X-ray crystallography. This complex exhibited intriguing multifunctional attributes, encompassing its capability for detecting picric acid and for reversible acid/base sensing responses. The enhanced conducting behavior of the complex as well as its resistance properties were investigated by performing I-V characteristics and electrochemical impedance spectroscopic (EIS) experiments respectively.
Collapse
Affiliation(s)
- Ottoor Anitha
- Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Sandipan Ghorai
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | - Humayun Amir
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abinayaselvi Murugan
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | - Chinnuswamy Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mathivanan Jothi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | |
Collapse
|
6
|
Morozov BS, Gargiulo F, Ghule S, Lee DJ, Hampel F, Kim HM, Kataev EA. Macrocyclic Conformational Switch Coupled with Pyridinium-Induced PET for Fluorescence Detection of Adenosine Triphosphate. J Am Chem Soc 2024; 146:7105-7115. [PMID: 38417151 DOI: 10.1021/jacs.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The binding of nucleotides is crucial for signal transduction as it induces conformational protein changes, leading to downstream cellular responses. Synthetic receptors that bind nucleotides and transduce the binding event into global conformational rearrangements are highly challenging to design, especially those that operate in an aqueous solution. Much work is focused on evaluating functionalized dyes to detect nucleotides, whereas coupling of a nucleotide-induced conformational switching to a sensing event has not been reported to date. We disclose synthetic receptors that undergo a global conformational rearrangement upon nucleotide binding. Integrating naphthalimide and the pyridinium ion into the structure enables stabilization of the folded conformation and efficient fluorescence quenching. The binding of a nucleotide rearranges the receptor conformation and alters the strong fluorescence enhancement. The methylpyridinium-containing receptor demonstrated high sensing selectivity for adenosine 5'-triphosphate (ATP) and a record 160-fold fluorescence enhancement. It can detect fluctuations of ATP in HeLa cells and possesses low cytotoxicity. The developed systems present an attractive approach for designing ATP-responsive artificial molecular switches that operate in water and integrate a strong fluorescence response.
Collapse
Affiliation(s)
- Boris S Morozov
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Fabiano Gargiulo
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Swapnil Ghule
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Dong Joon Lee
- Department of Chemistry and Department of Energy Systems Research, Ajou University, 16499 Suwon, Republic of Korea
| | - Frank Hampel
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, 16499 Suwon, Republic of Korea
| | - Evgeny A Kataev
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Zhou X, Huang S, Liu W, Shang L. Metal Ion-Regulated Fluorescent Sensor Array Based on Gold Nanoclusters for Physiological Phosphate Sensing. Anal Chem 2024; 96:4224-4231. [PMID: 38421217 DOI: 10.1021/acs.analchem.3c05582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The detection of physiological phosphates (PPs) is of great importance due to their essential roles in numerous biological processes, but the efficient detection of different PPs simultaneously remains challenging. In this work, we propose a fluorescence sensor array for detecting PPs based on metal-ion-regulated gold nanoclusters (AuNCs) via an indicator-displacement assay. Zn2+ and Eu3+ are selected to assemble with two different AuNCs, resulting in quenching or enhancing their fluorescence. Based on the competitive interaction of metal ions with AuNCs and PPs, the fluorescence of AuNCs will be recovered owing to the disassembly of AuNC-metal ion ensembles. Depending on different PPs' distinct fluorescence responses, a four-channel sensor array was established. The array not only exhibits good discrimination capability for eight kinds of PPs (i.e., ATP, ADP, AMP, GTP, CTP, UTP, PPi, and Pi) via linear discriminant analysis but also enables quantitative detection of single phosphate (e.g., ATP) in the presence of interfering PPs mixtures. Moreover, potential application of the present sensor array for the discrimination of different PPs in real samples (e.g., cell lysates and serum) was successfully demonstrated with a good performance. This work illustrates the great potential of a metal ion-regulated sensor array as a new and efficient sensing platform for differential sensing of phosphates as well as other disease-related biomolecules.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Saijin Huang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Maji S, Samanta J, Natarajan R. Water-Soluble Triazolium Covalent Cages for ATP Sensing. Chemistry 2024; 30:e202303596. [PMID: 38133633 DOI: 10.1002/chem.202303596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
Water-soluble organic cages are attractive targets for their molecular recognition and sensing features of biologically relevant molecules. Here, we have successfully designed and synthesized a pair of water-soluble cationic cages employing click reaction as the fundamental step followed by the N-methylation of the triazole rings. The rigid and shape-persistent 3D hydrophobic cavity, positively charged surface, H-bonding triazolium rings, and excellent water solubility empower both cages to exhibit a superior affinity and selectivity for binding with adenosine-5'-triphosphate (ATP) compared to cyclophanes and other macrocyclic receptors. Both cage molecules (PCC⋅Cl and BCC⋅Cl) can bind a highly emissive dye HPTS (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt) to form non-fluorescent complexes. The addition of ATP resulted in the stronger cage⊂ATP complexes with the retention of HPTS emission upon its displacement. The resultant indicator-displacement assay system can efficiently sense and quantify ATP in nanomolar detection limits in buffer solutions and human serum matrix. Spectroscopic and theoretical studies revealed the synergistic effect of π⋅⋅⋅π stacking interaction between the aromatic moiety of the cationic cages and the adenine moiety of ATP, as well as the electrostatic and hydrogen bonding interaction between the phosphate anion of ATP and triazole protons of cages, played the pivotal roles in the sensing process.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Zhou X, Huang S, Zhang D, Liu W, Gao W, Xue Y, Shang L. Gold Nanocluster-Based Fluorescent Microneedle Platform toward Visual Detection of ATP. Anal Chem 2023; 95:12104-12112. [PMID: 37525420 DOI: 10.1021/acs.analchem.3c02242] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Adenosine triphosphate (ATP) participates in the regulation of most biological processes, and the ATP level is closely associated with many diseases. However, it still remains challenging to achieve on-site monitoring of ATP in an equipment-free and efficient way. Microneedles, a minimally invasive technology that can extract biomarkers from liquid biopsies, have recently emerged as useful tools for early diagnosis of a broad range of diseases. In this work, we developed hydrogel microneedles that are loaded with ATP-specific dual-emitting gold nanoclusters (RhE-AuNCs) for fast sampling and on-needle detection of ATP. These RhE-AuNCs were photo-crosslinked to the hydrogel matrix to form a fluorescent microneedle patch. Based on the ATP-induced Förster resonance energy transfer in RhE-AuNCs, a highly selective, sensitive, and reliable ATP sensor was developed. Moreover, simultaneous capture and visual detection of ATP was achieved by the AuNC-loaded microneedle sensing platform, which exhibits promising sensing performance. This work provides a new approach to design a point-of-care ATP sensing platform, which also holds great potential for the further development of microneedle-based analytical devices.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Saijin Huang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dan Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- College of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Real-Time Visualization of Cytosolic and Mitochondrial ATP Dynamics in Response to Metabolic Stress in Cultured Cells. Cells 2023; 12:cells12050695. [PMID: 36899830 PMCID: PMC10000496 DOI: 10.3390/cells12050695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Adenosine 5' triphosphate (ATP) is the energy currency of life, which is produced in mitochondria (~90%) and cytosol (less than 10%). Real-time effects of metabolic changes on cellular ATP dynamics remain indeterminate. Here we report the design and validation of a genetically encoded fluorescent ATP indicator that allows for real-time, simultaneous visualization of cytosolic and mitochondrial ATP in cultured cells. This dual-ATP indicator, called smacATPi (simultaneous mitochondrial and cytosolic ATP indicator), combines previously described individual cytosolic and mitochondrial ATP indicators. The use of smacATPi can help answer biological questions regarding ATP contents and dynamics in living cells. As expected, 2-deoxyglucose (2-DG, a glycolytic inhibitor) led to substantially decreased cytosolic ATP, and oligomycin (a complex V inhibitor) markedly decreased mitochondrial ATP in cultured HEK293T cells transfected with smacATPi. With the use of smacATPi, we can also observe that 2-DG treatment modestly attenuates mitochondrial ATP and oligomycin reduces cytosolic ATP, indicating the subsequent changes of compartmental ATP. To evaluate the role of ATP/ADP carrier (AAC) in ATP trafficking, we treated HEK293T cells with an AAC inhibitor, Atractyloside (ATR). ATR treatment attenuated cytosolic and mitochondrial ATP in normoxia, suggesting AAC inhibition reduces ADP import from the cytosol to mitochondria and ATP export from mitochondria to cytosol. In HEK293T cells subjected to hypoxia, ATR treatment increased mitochondrial ATP along with decreased cytosolic ATP, implicating that ACC inhibition during hypoxia sustains mitochondrial ATP but may not inhibit the reversed ATP import from the cytosol. Furthermore, both mitochondrial and cytosolic signals decrease when ATR is given in conjunction with 2-DG in hypoxia. Thus, real-time visualization of spatiotemporal ATP dynamics using smacATPi provides novel insights into how cytosolic and mitochondrial ATP signals respond to metabolic changes, providing a better understanding of cellular metabolism in health and disease.
Collapse
|
11
|
Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
13
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Geng W, Zheng Z, Jiang H, Guo D. Nucleotide Recognition by a Guanidinocalixarene Receptor in Aqueous Solution. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2204-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Rim Lee Y, Kwon N, Swamy KMK, Kim G, Yoon J. Rhodamine-thiourea Linked Naphthalimide Derivative to Image ATP in Mitochondria using Two Channels. Chem Asian J 2022; 17:e202200413. [PMID: 35671139 DOI: 10.1002/asia.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Adenosine 5'-triphosphate (ATP), synthesized in mitochondria, is an energy molecule in all living things. ATP not only serves as an energy source for protein synthesis and muscle contraction, but also as an important indicator for various diseases, such as Parkinson's disease, cardiovascular disease, and others. Accordingly, detection and sensing of ATP, especially in mitochondria, are important. In this study, a unique ring-opening process of rhodamine was coupled to recognition of ATP via introduction of a thiourea moiety, which was further linked to a naphthalimide group. A strong fluorescent emission at ∼580 nm was accompanied by a color change from colorless to pink upon addition of ATP at pH 7.4. Fluorescent probe 1 successfully imaged mitochondrial ATP with a Pearson's coefficient of 0.8. In addition, green emission from the naphthalimide moiety at ∼530 nm was observed without any change upon addition of ATP. This emission can be considered equivalent to an internal standard to utilize probe 1 as a dual-channel probe for ATP. Furthermore, probe 1 showed negligible cytotoxicity based on MTT assays.
Collapse
Affiliation(s)
- You Rim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| |
Collapse
|
16
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
17
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis. Top Curr Chem (Cham) 2022; 380:22. [PMID: 35412098 DOI: 10.1007/s41061-022-00376-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Fluorescent probes have been used widely in bioimaging, including biological substance detection, cell imaging, in vivo biochemical reaction process tracking, and disease biomarker monitoring, and have gradually occupied an indispensable position. Compared with traditional biological imaging technologies, such as positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI), the attractive advantages of fluorescent probes, such as real-time imaging, in-depth visualization, and less damage to biological samples, have made them increasingly popular. Among them, ultraviolet-visible (UV-vis) fluorescent probes still occupy the mainstream in the field of fluorescent probes due to the advantages of available structure, simple synthesis, strong versatility, and wide application. In recent years, fluorescent probes have become an indispensable tool for bioimaging and have greatly promoted the development of diagnostics. In this review, we focus on the structure, design strategies, advantages, representative probes and latest discoveries in application fields of UV-visible fluorescent probes developed in the past 3-5 years based on several fluorophores. We look forward to future development trends of fluorescent probes from the perspective of bioimaging and diagnostics. This comprehensive review may facilitate the development of more powerful fluorescent sensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
18
|
Huang B, Liang B, Zhang R, Xing D. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Sun W, Gu X, Dong P, Chu L, Zhang Z, Cheng Z, Yang F. Cell-membrane-targeted near-infrared fluorescent probe for detecting extracellular ATP. Analyst 2022; 147:4167-4173. [DOI: 10.1039/d2an00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for detecting extracellular ATP.
Collapse
Affiliation(s)
- Wan Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Lianjun Chu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhongyu Zhang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhenyuan Cheng
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, China
| |
Collapse
|
20
|
Khojastehnezhad A, Taghavi F, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta 2021; 235:122753. [PMID: 34517621 DOI: 10.1016/j.talanta.2021.122753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
The design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions. They can also be conjugated to optical and electronic probes such as quantum dot (QD) nanomaterials and provide unique QD aptasensing platforms. Currently, these Apt-based biosensors with excellent recognition features have attracted extensive attention due to the high specificity, rapid response and facile construction. Therefore, in this review article, recent achievements and advances in aptasensing detection of ATP based on different detection methods and types of QDs are discussed. In this regard, the optical and electrochemical aptasensors have been categorized based on detection methods; fluorescence (FL), electrochemiluminescence (ECL) and photoelectrochemical (PEC) and they have been also divided to two main groups based on QDs; metal-based (M-based) and carbon-based (C-based) materials. Then, their advantages and limitations have been highlighted, compared and discussed in detail.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
López-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Köhn G, Hann JL, Wenk J, James TD, Kim HM, Lewis SE. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem Commun (Camb) 2021; 57:10608-10611. [PMID: 34570136 DOI: 10.1039/d1cc04122c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AzuFluor® 435-DPA-Zn, an azulene fluorophore bearing two zinc(II)-dipicolylamine receptor motifs, exhibits fluorescence enhancement in the presence of adenosine diphosphate. Selectivity for ADP over ATP, AMP and PPi results from appropriate positioning of the receptor motifs, since an isomeric sensor cannot discriminate between ADP and ATP.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Lloyd C Murfin
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2), University of Bath, Bath, BA2 7AY, UK
| | - Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jannis Wenk
- Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
22
|
Ren X, Huang X, Wu Q, Tan L, Fu C, Chen Y, Meng X. Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
He J, Yan B, Meng J, Ran M, Zhou Y, Deng J, Li C, Yao Q. Study of Rhodamine‐Based Fluorescent Probes for Organic Radical Intermediates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin He
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Boyu Yan
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jiangtao Meng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Maogang Ran
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Yutong Zhou
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jinfei Deng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Chao‐Jun Li
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Qiuli Yao
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining Qinghai 810008 China
| |
Collapse
|
24
|
Guo YJ, Cui CX, Liu YJ. Theoretical Study on Storage and Release of Firefly Luciferin. Photochem Photobiol 2021; 98:184-192. [PMID: 34333799 DOI: 10.1111/php.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Among numerous bioluminescent organisms, firefly is the most studied one. Recent experiment proposed that sulfoluciferin (SLH2 ) may serve as a storage form of luciferin (LH2 ). In the present article, we employed density functional theory calculation to uncover the mechanism and detailed process of the storage and release reactions. Due to lack of available crystallographic structure of the related enzyme, the calculation was performed on a model system. For the storage reaction, possible amino acid residues were used for imitating the protein environment. For the release reaction, the dielectric constant of 3.0 was employed to simulate the polarity of the protein cavity. The computational results indicated that the reactions from LH2 to SLH2 and from SLH2 to LH2 are both exergonic, which favor the storage and release processes and coincide with the experimental observation. Basing on experimental and current theoretical study, we supplemented the stages of LH2 storage and release in the entire bioluminescent cycle of firefly. The current theoretical calculation could inspire the study on LH2 storage and release of other bioluminescent organisms.
Collapse
Affiliation(s)
- Ya-Jie Guo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.,Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| |
Collapse
|
25
|
Pushina M, Farshbaf S, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*. Chemistry 2021; 27:11344-11351. [PMID: 34129701 DOI: 10.1002/chem.202100896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The newly prepared fluorescent carboxyamidoquinolines (1-3) and their Zn(II) complexes (Zn@1-Zn@3) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5'-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5'-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5-100 μM concentration in unknown samples with error <2.5 %.
Collapse
Affiliation(s)
- Mariia Pushina
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Sepideh Farshbaf
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
26
|
Li Y, Liu J. Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds. Analyst 2021; 145:6753-6768. [PMID: 32909556 DOI: 10.1039/d0an00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenine is a key nucleobase, adenosine is an endogenous regulator of the immune system, while adenosine triphosphate (ATP) is the energy source of many biological reactions. Selective detection of these molecules is useful for understanding biological processes, biochemical reactions and signaling. Since 1993, various aptamers have been reported to bind to adenine and its derivatives. In addition, the adenine riboswitch was later discovered. This review summarizes the efforts for the selection of RNA and DNA aptamers for adenine derivatives, and we pay particular attention to the specificity of binding. In addition, other molecular recognition strategies based on rational sequence design are also introduced. Most of the work in the field was performed on the classic DNA aptamer for adenosine and ATP reported by the Szostak group. Based on this aptamer, some representative applications such as the design of fluorescent, colorimetric and electrochemical biosensors, intracellular imaging, and ATP-responsive materials are also described. In addition, we critically review the limit of the reported aptamers and also important problems in the field, which can give future research opportunities.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
27
|
Binding and Sensing Properties of a Hybrid Naphthalimide-Pyrene Aza-Cyclophane towards Nucleotides in an Aqueous Solution. Molecules 2021; 26:molecules26040980. [PMID: 33673272 PMCID: PMC7918853 DOI: 10.3390/molecules26040980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Selective recognition of nucleotides with synthetic receptors is an emerging direction to solve a series of nucleic acid-related challenges in biochemistry. Towards this goal, a new aza-cyclophane with two different dyes, naphthalimide and pyrene, connected through a triamine linker has been synthesized and studied for the ability to bind and detect nucleoside triphosphates in an aqueous solution. The receptor shows Foerster resonance energy transfer (FRET) in fluorescence spectra upon excitation in DMSO, which is diminished dramatically in the presence of water. According to binding studies, the receptor has a preference to bind ATP (adenosine triphosphate) and CTP (cytidine triphosphate) with a “turn-on” fluorescence response. Two separate emission bands of dyes allow one to detect nucleotides in a ratiometric manner in a broad concentration range of 10−5–10−3 M. Spectroscopic measurements and quantum chemical calculations suggest the formation of receptor–nucleotide complexes, which are stabilized by dispersion interactions between a nucleobase and dyes, while hydrogen bonding interactions of nucleobases with the amine linkers are responsible for selectivity.
Collapse
|
28
|
Wu B, Xue T, He Y. Design of activatable red-emissive assay for cysteine detection in aqueous medium with aggregation induced emission characteristics. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Kundu S, Islam MM, Mandal S, Sahoo P. Fluorescence ‘off–on–off’ signaling with zinc ensemble: a new array of investigating prevalence of ATP in liver cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj00051a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Hydroxy naphthaldehyde–picolylamine conjugate (NPAC) ensemble with Zn2+ (NPAC–Zn2+) has been synthesized for the selective recognition and estimation of ATP in human liver cancer cells.
Collapse
Affiliation(s)
- Shampa Kundu
- Department of Chemistry
- Visva-Bharati University
- Santiniketan-731235
- India
| | | | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata-700073
- India
| | - Prithidipa Sahoo
- Department of Chemistry
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
31
|
G. Keller S, Kamiya M, Urano Y. Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules 2020; 25:E5964. [PMID: 33339370 PMCID: PMC7766215 DOI: 10.3390/molecules25245964] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10'. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure-behavior relationship including novel computational approaches.
Collapse
Affiliation(s)
- Sascha G. Keller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
32
|
Agafontsev AM, Shumilova TA, Oshchepkov AS, Hampel F, Kataev EA. Ratiometric Detection of ATP by Fluorescent Cyclophanes with Bellows-Type Sensing Mechanism. Chemistry 2020; 26:9991-9997. [PMID: 32497327 PMCID: PMC7496914 DOI: 10.1002/chem.202001523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Pyrene-based cyclophanes have been synthesized with the aim to realize a bellows-type sensing mechanism for the ratiometric detection of nucleotide concentrations in a buffered aqueous solution. The sensing mechanism involves the encapsulation of a nucleobase between two pyrene rings, which affects the monomer-excimer equilibrium of the receptor in the excited state. The nature of the spacer and its connection pattern to pyrene rings have been varied to achieve high selectivity for ATP. The 1,8-substituted pyrene-based cyclophane with the 2,2'-diaminodiethylamine spacer demonstrates the best selectivity for ATP showing a 50-fold increase in the monomer-excimer emission ratio upon saturation with the nucleotide. The receptor can detect ATP within the biological concentrations range over a wide pH range. NMR and spectroscopic studies have revealed the importance of hydrogen bonding and stacking interactions for achieving a required receptor selectivity. The probe has been successfully applied for the real-time monitoring of creatine kinase activity.
Collapse
Affiliation(s)
- Aleksandr M. Agafontsev
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS9 Lavrentiev Avenue630090NovosibirskRussian Federation
- Institute of ChemistryTechnische Universität Chemnitz09107ChemnitzGermany
| | | | | | - Frank Hampel
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Evgeny A. Kataev
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
33
|
Usha G, Prakash R, Karpagalakshmi K, Ramalakshmi S, Piramuthu L, Yang C, Selvapalam N. Supramolecular Assembly of Acriflavine on Graphene Oxide for the Sensing of Adenosine Phosphates. ANAL SCI 2020; 36:1365-1369. [PMID: 32655102 DOI: 10.2116/analsci.20p113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An acriflavine-graphene oxide (GAF) supramolecular assembly has been prepared from water-soluble graphene oxide (GO) and a fluorescent dye, acriflavine (AF). Upon binding this non-covalently to the GO, the fluorescence of acriflavine has been "turned off" effectively, competitive binding potential of the sensor substrates such as ATP, ADP, AMP and the pyrophosphate weakens the supramolecular assembly of GAF, which allows the release of acriflavine quantitatively, which also "turns-on" the fluorescence of the dye under UV irradiation. Interestingly, GAF displayed the highest sensitivity towards ATP within the family of adenosine phosphates. We have developed a naked eye detection method for the adenosine phosphates biomolecules. For the first time, acriflavine has been utilized for the sensing of adenosine phosphates in combination with GO, which can be useful for the detection of other biomolecules.
Collapse
Affiliation(s)
- Govindaraj Usha
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| | - Ramesh Prakash
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| | - Karuppasamy Karpagalakshmi
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| | - Sundaram Ramalakshmi
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| | - Lakshminarayanan Piramuthu
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| | - Cheng Yang
- Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University
| | - Narayanan Selvapalam
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University)
| |
Collapse
|
34
|
Kanagaraj K, Xiao C, Rao M, Fan C, Borovkov V, Cheng G, Zhou D, Zhong Z, Su D, Yu X, Yao J, Hao T, Wu W, Chruma JJ, Yang C. A Quinoline-Appended Cyclodextrin Derivative as a Highly Selective Receptor and Colorimetric Probe for Nucleotides. iScience 2020; 23:100927. [PMID: 32169819 PMCID: PMC7066246 DOI: 10.1016/j.isci.2020.100927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
The design and development of specific recognition and sensing systems for biologically important anionic species has received growing attention in recent years, as they play significant roles in biology, pharmacy, and environmental sciences. Herein, a new supramolecular sensing probe L1 was developed for highly selective differentiation of nucleotides. L1 displayed extremely marked absorption and emission differentiation upon binding with nucleotide homologs of AMP, ADP, and ATP, due to the divergent spatial orientations of guests upon binding, which allowed for a naked-eye colorimetric differentiation for nucleotides. A differentiating mechanism was unambiguously rationalized by using various spectroscopic studies and theoretical calculations. Furthermore, we successfully demonstrated that L1 can be applied to the real-time monitoring of the enzyme-catalyzed phosphorylation/dephosphorylation processes and thus demonstrated an unprecedented visualizable strategy for selectively differentiating the structurally similar nucleotides and real-time monitoring of biological processes via fluorescent and colorimetric changes.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Victor Borovkov
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR, Osaka University, Japan
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Xingke Yu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
35
|
Ren TB, Wen SY, Wang L, Lu P, Xiong B, Yuan L, Zhang XB. Engineering a Reversible Fluorescent Probe for Real-Time Live-Cell Imaging and Quantification of Mitochondrial ATP. Anal Chem 2020; 92:4681-4688. [PMID: 32098468 DOI: 10.1021/acs.analchem.0c00506] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Real-time imaging and quantification of adenosine triphosphate (ATP) fluctuation in cells are significant for understanding the relationship between energy metabolism and cell functions. However, few synthetic fluorescent probes have been reported to tackle this challenge due to lack of accurate fluorescence readout and suitable response concentration. Herein we designed and synthesized a ratiometric fluorescent probe (Rh6G-ACFPN) for quantitatively detecting the fluctuation of mitochondrial ATP in living cells. Rh6G-ACFPN selectively and reversibly responds to ATP with an ideal dissociation constant (Kd) of 4.65 mM (3-10 mM: the range of mitochondrial ATP concentrations). Live-cell imaging allows us to directly monitor the dynamic changes of mitochondrial ATP in high temporal resolution. Moreover, for the first time, mitochondrial ATP in normal and cancer cells lines was successfully quantified and discriminated. These results demonstrate the versatility of Rh6G-ACFPN as a useful imaging tool to elucidate the function of mitochondrial ATP in living cells.
Collapse
Affiliation(s)
- Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Si-Yu Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lu Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Peng Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
36
|
Yuan D, Yan H, Liu J, Liu J, Li C, Wang J. A fast and colorimetric sensor array for the discrimination of ribonucleotides in human urine samples by gold nanorods. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Aoki K, Osako R, Deng J, Hayashita T, Hashimoto T, Suzuki Y. Phosphate-sensing with (di-(2-picolyl)amino)quinazolines based on a fluorescence on–off system. RSC Adv 2020; 10:15299-15306. [PMID: 35495469 PMCID: PMC9052313 DOI: 10.1039/d0ra01455a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 01/29/2023] Open
Abstract
Detection and visualization of phosphates such as ATP in living organisms can facilitate the elucidation of various biological events. Although substantial efforts had been made in this area, present methods have disadvantages such as the need for specialized equipment and poor sensitivities. To address these limitations, novel fluorescent probes, (di-(2-picolyl)amino)quinazolines, were developed for application in ATP detection. They selectively recognized copper ions by fluorescence quenching, and their copper complexes displayed fluorescence enhancement in the presence of phosphoric acid derivatives. This fluorescence on–off system enabled highly sensitive fluorescence detection of ATP when combined with a phenyl boronic acid-modified γ-cyclodextrin through a plausible multipoint recognition system. Supramolecular probe Cu-dpa-QZ2/FPB-γ-CyD recognized ATP with high sensitivity.![]()
Collapse
Affiliation(s)
- Kazusa Aoki
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Ryuji Osako
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Jiahui Deng
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Yumiko Suzuki
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
38
|
Li W, Gong X, Fan X, Yin S, Su D, Zhang X, Yuan L. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ratajczak K, Lukasiak A, Grel H, Dworakowska B, Jakiela S, Stobiecka M. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent "On-Off" switching DNA aptamer. Anal Bioanal Chem 2019; 411:6899-6911. [PMID: 31407049 PMCID: PMC6834760 DOI: 10.1007/s00216-019-02061-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Adenosine triphosphate (ATP) is the main energy source in cells and an important biomolecule participating in cellular reactions in living organisms. Since the ATP level changes dynamically reflecting the development of a debilitating disease or carcinogenesis, we have focused in this work on monitoring of the oligomycin (OMC)-modulated ATP synthase inhibition using a fluorescent-switching DNA aptamer designed for the detection of ATP (Apt(ATP)), as the model for studies of dynamic ATP level variation. The behavior of the ATP aptamer has been characterized using fluorescence spectroscopy. The Intramolecular fluorescence resonance energy transfer (iFRET) operates in the proposed aptamer from the FAM dye moiety to guanines of the aptamer G-quadruplex when the target ATP is present and binds to the aptamer changing its conformation. The iFRET process enables the detection of ATP down to the limit of detection, LOD = 17 μM, without resorting to any extra chemi-amplification schemes. The selectivity coefficients for relevant interferent triphosphates (UTP, GTP, and CTP) are low for the same concentration as that of ATP. We have demonstrated an efficient transfection of intact cells and OMC-treated SW480 colon cancer cells with Apt(ATP), using microscopic imaging, iFRET measurements, and cell viability testing with MTT method. The applicability of the switching DNA aptamer for the analysis of real samples, obtained by lysis of SW480 cells, was also tested. The proposed Apt(ATP) may be considered as a viable candidate for utilization in measurements of dynamic ATP level modulation in cells in different stages of cancer development and testing of new drugs in pharmacological studies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Agnieszka Lukasiak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
40
|
A Coumarin-Benzothiazole Derivative as a FRET-Based Chemosensor of Adenosine 5′-Triphosphate. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7030034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A coumarin-benzothiazole ratiometric probe of ATP was designed and synthesized. The probe is based on incorporation of benzothiazole scaffold as a donor and coumarin nucleus as an acceptor in a single Förster resonance energy transfer/fluorescence resonance energy transfer (FRET) sensing platform. The sensor can detect ATP in aqueous solution with high selectivity over other nucleotide polyphosphate (NPP) anions. Binding of ATP to the sensor results in modulation of FRET efficiency between the donor and the acceptor which afforded a linear relationship between FRET signal and ATP (0.1–10 μM). A limit of detection (LOD) of 94.5 nM was quantified for FRET sensing of ATP by the probe. In addition, Job plot analysis revealed 1:1 binding interaction between the probe and ATP. The FRET probe was successfully utilized in monitoring ATP hydrolysis by apyrase in aqueous solution.
Collapse
|
41
|
Ding L, Tian Z, Hou J, Dou T, Jin Q, Wang D, Zou L, Zhu Y, Song Y, Cui J, Ge G. Sensing carboxylesterase 1 in living systems by a practical and isoform-specific fluorescent probe. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Zhang J, Zhang J, Yan Z, Xie J. Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Long S, Qiao Q, Deng F, Miao L, Yoon J, Xu Z. Self-assembling nanoprobes that display two-dimensional fluorescent signals for identification of surfactants and bacteria. Chem Commun (Camb) 2019; 55:969-972. [DOI: 10.1039/c8cc09544b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The imidazolium-pyrene self-assembling nanoprobes can rapidly discriminate four types of surfactants.
Collapse
Affiliation(s)
- Shuangshuang Long
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Qinglong Qiao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Fei Deng
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Lu Miao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
44
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
45
|
Hou XD, Ge GB, Weng ZM, Dai ZR, Leng YH, Ding LL, Jin LL, Yu Y, Cao YF, Hou J. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorg Chem 2018; 80:577-584. [DOI: 10.1016/j.bioorg.2018.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|