1
|
Yuan J, Que R, Zhao W, Song F, Cao Y, Yu B. Influences of lysine-specific demethylase 1 inhibitors on NO synthase-Kruppel-like factor pathways in human endothelial cells in vitro and zebrafish (Danio rerio) larvae in vivo. J Appl Toxicol 2023; 43:1748-1760. [PMID: 37408164 DOI: 10.1002/jat.4512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) inhibitors are being developed for cancer therapy, but their bioeffects on vasculatures are not clear. In this study, we compared the influences of ORY-1001 (an LSD1 inhibitor being advanced into clinical trials) and 199 (a novel LSD1 inhibitor recently developed by us) to human umbilical vein endothelial cells (HUVECs) in vitro and further verified the bioeffects of ORY-1001 to zebrafish (Danio rerio) larvae in vivo. The results showed that up to 10 μM ORY-1001 or 199 did not significantly affect the cellular viability of HUVECs but substantially reduced the release of inflammatory interleukin-8 (IL-8) and IL-6. The signaling molecule in vasculatures, NO, was also increased in HUVECs. As the mechanism, the protein levels of endothelial NO synthase (eNOS) or p-eNOS, and their regulators Kruppel-like factor 2 (KLF2) or KLF4, were also increased after drug treatment. In vivo, 24 h treatment with up to 100 nM ORY-1001 reduced blood speed without changing morphologies or locomotor activities in zebrafish larvae. ORY-1001 treatment reduced the expression of il8 but promoted the expression of klf2a and nos in the zebrafish model. These data show that LSD1 inhibitors were not toxic but capable to inhibit inflammatory responses and affect the function of blood vessels through the up-regulation of the NOS-KLF pathway.
Collapse
Affiliation(s)
- Jialin Yuan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruiman Que
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Song F, Li S, Dai X, Yang F, Cao Y. Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas. Mol Omics 2023; 19:150-161. [PMID: 36538054 DOI: 10.1039/d1mo00470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although titanium (Ti)-based nanomaterials (NMs) were traditionally considered as biologically inert materials, it was recently reported that Ti-based NMs induce adverse vascular effects by inhibiting Kruppel-like factor 2 (KLF2) and/or KLF4, vasoprotective KLFs with well-documented regulatory activity in NO signaling. However, the potential roles of other KLFs are not clear. KLF6 was recently identified as an important KLF involved in regulating endothelial dysfunction, inflammation, and angiogenesis, therefore, this study investigated the influence of titanate nanofibers (TiNFs) on KLF6-mediated events. Ingenuity pathway analysis (IPA) showed that TiNFs altered the expression of a panel of KLF6-related genes: KLF6-mediated gene ontology (GO) terms were altered, categories including cytokine-mediated signaling pathways, transcription factor (TF) functions and membrane-bound organelles. Additionally, RT-PCR confirmed that TiNFs increased KLF6 activating transcription factor 3 (ATF3), a TF involved in endoplasmic reticulum (ER) stress, and ELISA confirmed the increase of soluble monocyte chemotactic protein 1 (sMCP-1), a KLF6-related inflammatory cytokine. Interestingly, the activation of klf6, atf3 and C-C motif chemokine ligand 2 (ccl2; mcp-1 encoding gene) was observed in aortas of mice following one-time intravenous injection but not intratracheal instillation of TiNFs (100 μg per mouse), indicating a need for direct contact with NMs to activate klf6-mediated pathways in vivo. In endothelial cells, KLF6 knockdown inhibited the expression of ATF3 but not CCL2, suggesting the regulatory role of KLF6 in ATF3 expression. Overall, this study uncovered a previously unknown role of KLF6 in TiNF-induced vascular effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Song F, Tang X, Zhao W, Huang C, Dai X, Cao Y. Activation of Kruppel-like factor 6 by multi-walled carbon nanotubes in a diameter-dependent manner in THP-1 macrophages in vitro and bronchoalveolar lavage cells in vivo. ENVIRONMENTAL SCIENCE: NANO 2023; 10:855-865. [DOI: 10.1039/d2en00926a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
MWCNTs activated KLF6-signaling pathways in THP-1 macrophages and bronchoalveolar lavage cells.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Wang T, Xiao G, Lu Q, Zhou Y, Wang S, Liang X, Song Y, Xu M, Zhu Y, Li N. Synergistic Lysosomal Impairment and ER Stress Activation for Boosted Autophagy Dysfunction Based on Te Double-Headed Nano-Bullets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201585. [PMID: 35644863 DOI: 10.1002/smll.202201585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Indexed: 06/15/2023]
Abstract
To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO32- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.
Collapse
Affiliation(s)
- Tingting Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, P. R. China
| | - Qianglan Lu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yilin Song
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Gu M, Wang S, Cao W, Yan D, Cao Y. Comparison of P25 and nanobelts on Kruppel-like factor-mediated nitric oxide pathways in human umbilical vein endothelial cells. J Appl Toxicol 2022; 42:651-659. [PMID: 34633093 DOI: 10.1002/jat.4247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
Recently, we reported that titanium dioxide (TiO2 ) materials activated endothelial cells via Kruppel-like factor (KLF)-mediated nitric oxide (NO) dysfunction, but the roles of physical properties of materials are not clear. In this study, we prepared nanobelts from P25 particles and compared their adverse effects to human umbilical vein endothelial cells (HUVECs). TiO2 nanobelts had belt-like morphology but comparable surface areas as P25 particles. When applied to HUVECs, P25 particles or nanobelts did not induce cytotoxicity, although nanobelts were much more effective to increase intracellular Ti element concentrations compared the same amounts of P25 particles. Only nanobelts significantly induced THP-1 adhesion onto HUVECs. Consistently, nanobelts were more significant to induce the expression of intracellular adhesion molecule-1 (ICAM1) and the release of soluble ICAM-1 (sICAM-1), indicating that nanobelts were more potent to induce endothelial activation in vitro. As the mechanisms for endothelial activation, both P25 and nanobelts reduced the generation of intracellular NO as well as the expression of NO regulators KLF2 and KLF4. Combined, the results from this study indicated that the different morphologies of P25 particles and nanobelts only changed their internalization into HUVECs but showed minimal impact on KLF-mediated NO signaling pathways.
Collapse
Affiliation(s)
- Manyu Gu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Shuyi Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Wandi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Dejian Yan
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Lan W, Hu R, Huang D, Dong X, Shen G, Chang S, Dai D. Palladium Nanoparticles/Graphdiyne Oxide Nanocomposite with Excellent Peroxidase-like Activity and Its Application for Glutathione Detection. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1038-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2022; 42:4-16. [PMID: 33837572 DOI: 10.1002/jat.4172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The development of nanotechnology leads to the exposure of human beings to nanomaterials (NMs), and there is a health concern about the adverse vascular effects of NMs. Current data from epidemiology, controlled human exposure, and animal studies suggested that exposure to NMs could induce cardiopulmonary effects. In support of in vivo findings, in vitro studies showed that direct contact of vascular cells with NMs could induce endothelial cell (EC) activation and promote macrophage foam cell formation, although only limited studies showed that NMs could damage vascular smooth muscle cells and promote their phenotypic switch. It has been proposed that NMs induced adverse vascular effects via different mechanisms, but it is still necessary to understand the upstream events. Kruppel-like factors (KLFs) are a set of C2H2 zinc finger transcription factors (TFs) that can regulate various aspects of vascular biology, but currently, the roles of KLF2 in mediating the adverse vascular effects of NMs have gained little attention by toxicologists. This review summarized current knowledge about the adverse vascular effects of NMs and proposed the potential roles of KLFs in mediating these effects based on available data from toxicological studies as well as the current understanding about KLFs in vascular biology. Finally, the challenges in investigating the role of KLFs in vascular toxicology were also summarized. Considering the important roles of KLFs in vascular biology, further studies are needed to understand the influence of NMs on KLFs and the downstream events.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
9
|
Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021; 11:24419. [PMID: 34952904 PMCID: PMC8709863 DOI: 10.1038/s41598-021-03031-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
In this research, a new nano drug-based multi-walled carbon nanotubes (MWCNTs) was prepared and evaluated qualitatively. Bromocriptine (BRC) was conjugated to functionalized carbon nanotubes. Then, the CHNS, FT-IR, SEM, and RAMAN tests for characterization of the conjugated drug were done. The nanofluid-containing nano-drug was evaluated on lung cancer cells (A549 & QU-DB) and MRC5 by MTT and flow cytometry tests. Then, the gene expression studies of dopamine receptor genes were done before and after nano-drug treatment. After that, a western blotting test was carried out for further investigation of dopamine receptors protein production. Finally, Bax and Bcl-2 secretion were measured by the ELISA method in cells affected by MWCNTs-BRC Nf compared to untreated cells. The results showed that the nano-drug had a significant lethal effect on cancer cells, while it had no toxicity on MRC5. Also, the nano-drug could significantly induce apoptosis in lung cancer cells at a lower dose compared to the drug alone. In this study, a targeted nano-drug delivery system was designed, and its performance was evaluated based on neurotransmitter pathways, and the results showed that it may be useful in the treatment of lung cancer. However, additional studies on animal models are underway.
Collapse
Affiliation(s)
| | | | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Pornour
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, College Park, USA
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Cao Y, Xiao W, Li S, Qiu D. A comparative study of toxicity of graphdiyne and graphene oxide to human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:2021-2030. [PMID: 33973267 DOI: 10.1002/jat.4182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 11/09/2022]
Abstract
The success of graphene oxide (GO) has attracted extensive research interests in developing novel 2D nanomaterials (NMs). Graphdiyne (GDY) is a new member of carbon-based 2D NMs possessing sp- and sp2 -hybridized carbon atoms. However, the toxicity of GDY is less investigated as GO. In this study, we compared the toxicity of GDY and GO with human umbilical vein endothelial cells (HUVECs). Exposure to up to 100-μg/ml GDY and GO induced cytotoxicity, but there was no statistically significant difference between GDY and GO. At noncytotoxic concentration, 25-μg/ml GDY or GO led to the internalization of NMs, typically in cytoplasm but not in nuclei. Only GO but not GDY significantly increased THP-1 adhesion onto NM-exposed HUVECs. Meanwhile, compared with GDY, GO more effectively promoted the release of soluble intracellular cell adhesion molecule-1 (sICAM-1), indicating the differential effects of GDY and GO on endothelial activation. Neither GDY nor GO induced intracellular superoxide. However, GO significantly promoted the expression of endoplasmic reticulum (ER) stress genes activating transcription factor 4 (ATF4) and X-box binding protein 1 spliced (XBP-1s), as well pyroptosis genes NLR family pyrin domain containing 3 (NLRP3) and gasdermin D (GSDMD), whereas GDY did not show this effect. The results suggested that GDY and GO could be internalized into HUVECs leading to cytotoxic effects. However, GO was more potent to activate endothelial activation probably due to the activation of ER stress and pyroptosis genes.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Weijie Xiao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Dexin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Liu Y, Hu Q, Huang C, Cao Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NANOIMPACT 2021; 23:100333. [PMID: 35559834 DOI: 10.1016/j.impact.2021.100333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/15/2023]
Abstract
Tubular nanomaterials (NMs), such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs), may be used in biomedicine, but previous studies showed that MWCNTs induced toxicity to endothelial cells (ECs). However, the influence of tubular NMs on EC lipid profiles has gained little attention, probably because ECs are not traditionally considered to be involved in regulating lipid homeostasis. This study compared the different effects of MWCNTs and HNTs on lipid profile changes in human umbilical vein ECs (HUVECs). The results showed that MWCNTs but not HNTs of the same mass concentrations induced cytotoxicity, ultrastuctural changes and intracellular thiol depletion. Meanwhile, only MWCNTs promoted lipid accumulation due to the induction of ER stress leading to up-regulation of fatty acid synthase (FASN). Interestingly, lipidomics results showed that the main lipid classes induced by MWCNTs but not HNTs were ceramide (Cer) and phosphatidylinositol (PI), with most of the lipid classes unaltered or even decreased after NM exposure. Then, extra Cer and PI were added to explore the implications of increase of these lipids. Adding Cer promoted the cytotoxicity of MWCNTs to HUVECs, indicating the lipotoxic role of Cer. Whereas adding PI partially increased intracellular NO and decreased interleukin-6 (IL-6) release due to MWCNT exposure, indicating the signaling role of PI. These results indicated novel roles of lipid dysfunction in NM-induced toxicity to ECs, even though ECs are not the professional cells for controlling lipid homeostasis.
Collapse
Affiliation(s)
- Yanan Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Qilan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
12
|
申 杰, 杨 迪, 陈 梦, 郭 新. [Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:439-446. [PMID: 34145842 PMCID: PMC8220036 DOI: 10.19723/j.issn.1671-167x.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of multi-walled carbon nanotubes (MWCNTs) with different length or chemical modification on endothelial cell activation and to explore the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. METHODS MWCNTs were characterized by dynamic light scattering (DLS) after being suspended in culture medium. The immortalized mouse cerebral microvascular endothelial cell line b.End3 was treated with short MWCNTs (S-MWCNT, 0.5 to 2 μm), long MWCNTs (L-MWCNT, 10 to 30 μm) and the above long MWCNTs functionalized by carboxyl-(L-MWCNT-COOH), amino-(L-MWCNT-NH2) or hydroxyl-(L-MWCNT-OH) modification. Cytotoxicity of MWCNTs in b.End3 cells was determined by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay, and non-toxic low dose was selected for subsequent experiments. Effects of all types of MWCNTs on the endothelial activation of b.End3 were determined by the measurement of vascular cell adhesion molecule-1 (VCAM-1) concentration in cell supernatant and adhesion assay of human monocytic cell line THP-1 to b.End3.To further elucidate the mechanism involved, the protein expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3(NLRP3) in cells treated with S-MWCNT, L-MWCNT and L-MWCNT-COOH were measured by Western blot. RESULTS At a higher concentration (125 μg/cm2) and treated for 24 h, all types of MWCNTs significantly inhibited viability of b.End3 cells. At a sub-toxic concentration (6.25 μg/cm2), all types of MWCNTs treated for 12 h significantly induced the activation of b.End3 cells, as evidenced by the elevated VCAM-1 release and THP-1 adhesion. Compared with S-MWCNT, L-MWCNT significantly promoted endothelial cell activation. L-MWCNT and L-MWCNT-COOH activated b.End3 cells to a similar extent. Furthermore, treatment with S-MWCNT, L-MWCNT and L-MWCNT-COOH increased NLRP3 expression in a time-dependent manner at 6.25 μg/cm2. Compared with S-MWCNT, cells treated with L-MWCNT for 4 h and 12 h exhibited significantly increased protein expressions of NLRP3. However, no significant differences were detected in the level of NLRP3 protein in cells treated with L-MWCNT and L-MWCNT-COOH. CONCLUSION Compared with the surface chemical modification, length changes of MWCNTs exerted more influence on endothelial cell activation, which may be related to the activation of NLRP3 inflammasome. Our study contributes further understanding of the impact of MWCNTs on endothelial cells, which may have implications for the improvement of safety evaluation of MWCNTs.
Collapse
Affiliation(s)
- 杰 申
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 迪 杨
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 梦圆 陈
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 新彪 郭
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
13
|
Li S, Zheng X, Huang C, Cao Y. Titanate nanofibers reduce Kruppel-like factor 2 (KLF2)-eNOS pathway in endothelial monolayer: A transcriptomic study. CHINESE CHEM LETT 2021; 32:1567-1570. [DOI: 10.1016/j.cclet.2020.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Zhu P, Zhang T, Li J, Ma J, Ouyang X, Zhao X, Xu M, Wang D, Xu Q. Near-infrared emission Cu, N-doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. J Appl Toxicol 2020; 41:789-798. [PMID: 33269515 DOI: 10.1002/jat.4119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
Quantum dots (QDs) are luminescent semiconductor nanomaterials (NMs) with various biomedical applications, but the high toxicity associated with traditional QDs, such as Cd-based QDs, limits their uses in biomedicine. As such, the development of biocompatible metal-free QDs has gained extensive research interests. In this study, we synthesized near-infrared emission Cu, N-doped carbon dots (CDs) with optimal emission at 640 nm and a fluorescence quantum yield of 27.1% (in N,N-dimethylformamide [DMF]) by solvothermal method using o-phenylenediamine and copper acetate monohydrate. We thoroughly characterized the CDs and showed that they were highly fluorescent and stable under different conditions, although in highly acidic (pH = 1-2) or alkaline (pH = 12-13) solutions, a redshift or blueshift of fluorescence emission peak of Cu, N-doped CDs was also observed. When exposed to human umbilical vein endothelial cells (HUVECs), Cu, N-doped CDs only significantly induced cytotoxicity at very high concentrations (100 or 200 μg/ml), but their cytotoxicity appeared to be comparable with carbon black (CB) nanoparticles (NPs) at the same mass concentrations. As the mechanisms, 200 μg/ml Cu, N-doped CDs and CB NPs promoted endoplasmic reticulum (ER) stress proteins IRE1α and chop, leading to increased cleaved caspase 3/pro-caspase 3 ratio, but CB NPs were more effective. At noncytotoxic concentration (50 μg/ml), Cu, N-doped CDs successfully labeled HUVECs. In summary, we successfully prepared highly fluorescent and relatively biocompatible CDs to label HUVECs in vitro.
Collapse
Affiliation(s)
- Peide Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Ting Zhang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jianxiong Li
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xiangcheng Ouyang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Xuelin Zhao
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Meng Xu
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| |
Collapse
|
15
|
Gu M, Dai Z, Yan X, Ma J, Niu Y, Lan W, Wang X, Xu Q. Comparison of toxicity of Ti
3
C
2
and Nb
2
C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J Appl Toxicol 2020; 41:745-754. [DOI: 10.1002/jat.4085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manyu Gu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Zhiqi Dai
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Xiang Yan
- School of Materials Science and Engineering Baise University Baise China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Yingchun Niu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Wenjie Lan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Xin Wang
- PLA Strategic Support Force Characteristic Medical Center Beijing China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
16
|
Wu B, Jiang M, Liu X, Huang C, Gu Z, Cao Y. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo. Nanotoxicology 2020; 14:1017-1038. [PMID: 32574508 DOI: 10.1080/17435390.2020.1780642] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials (NMs) with tubular structures, such as halloysite nanotubes (HNTs), have potential applications in biomedicine. Although the biocompatibility of HNTs has been investigated before, the toxicity of HNTs to blood vessels is rarely systemically evaluated. Herein, we compared the toxicity of HNTs and multi-walled carbon nanotubes (MWCNTs) to human umbilical vein endothelial cells (HUVECs) in vitro and blood vessels of mice in vivo. HUVECs internalized HNTs and MWCNTs, but the uptake of HNTs was not obviously changed by clathrin inhibitor. Exposure to NMs decreased cellular viability, activated apoptotic proteins and up-regulated adhesion molecules, including soluble vascular cell adhesion molecule 1 (sVCAM-1) and VCAM-1. As the mechanisms, NMs decreased NO levels, eNOS mRNA and eNOS/p-eNOS proteins. Meanwhile, NMs promoted intracellular ROS and autophagy dysfunction, shown as decreased protein levels of LC3, beclin-1 and ATG5. The eNOS regulator Kruppel-like factor 4 (KLF4) was inhibited, but another eNOS regulator KLF4 was surprisingly up-regulated. Under in vivo conditions, ICR mice intravenously injected with NMs (50 μg/mouse, once a day for 5 days) showed an increased percentage of neutrophils, monocytes and basophils. Meanwhile, autophagy dysfunction, eNOS uncoupling, activation of apoptotic proteins and alteration of KLF proteins were also observed in mouse aortas. All of the toxic effects were more pronounced for MWCNTs in comparison with HNTs based on the same mass concentrations. Our results may provide novel insights about the toxicity of NMs with tubular structures to blood vessels. Considering the toxicological data reported here, HNTs are probably safer nanocarriers compared with MWCNTs.
Collapse
Affiliation(s)
- Bihan Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Mengdie Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Xuewu Liu
- Hunan Laboratory Animal Center, Hunan Drug Safety Evaluation Center, Liuyang, P.R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, P.R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| |
Collapse
|
17
|
Li Z, Gao J, Xiang Z, Zhang H, Wang Y, Zhang X. A pH-responsive polymer linked with immunomodulatory drugs: synthesis, characteristics and in vitro biocompatibility. J Appl Toxicol 2020; 41:724-735. [PMID: 32776438 DOI: 10.1002/jat.4042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy is a promising method for cancer therapy. Imiquimod (R837) is a molecule that could activate immune systems for cancer immunotherapy, but an easily manufactured biocompatible carrier to deliver R837 may be needed to overcome the disadvantages of R837. Micelles formed by biocompatible copolymers have been widely used to deliver chemotherapeutic drugs but not immunotherapeutic drugs. In this study, R837 was linked to an amphiphilic biodegradable copolymer mPEG-b-PLA via acid-sensitive Schiff bases. The molecular structures were investigated by 1 H nuclear magnetic resonance, gel permeation chromatography and Fourier transform infrared spectroscopy. The product could be self-assembled into micelles with R837 content as high as 22.4%. Owing to acid-cleavable Schiff bases, the release of R837 from micelles was markedly accelerated under acidic media. Consequently, the micelles linked with R837 stimulated the expression of major histocompatibility complex II-stimulating molecules on the surface of RAW 264.7 macrophages at pH 6.5 but not pH 7.4. By using human umbilical vein endothelial cells as the in vitro model, it was shown that the polymer carriers and R837-linked micelles were minimally cytotoxic and did not induce the activation of endothelial cells under physiological pH, which suggested the relatively high biocompatibility. In conclusion, this study successfully developed pH-responsive immunotherapeutic drug-loaded micelles that could activate macrophages at acidic pH in vitro. The high biocompatibility of the micelles to endothelial cells also indicated the potential uses under in vivo conditions.
Collapse
Affiliation(s)
- Zhaocheng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Jiyuan Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Zexing Xiang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Honglei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Yibei Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, China
| |
Collapse
|
18
|
Blood compatible heteratom-doped carbon dots for bio-imaging of human umbilical vein endothelial cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Cao Y, Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicol Appl Pharmacol 2019; 385:114801. [PMID: 31678607 DOI: 10.1016/j.taap.2019.114801] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Carbon nanotubes (CNTs) are novel carbon based nanomaterials (NMs) that could be used in many areas ranging from electronics to biotechnology. The present review summarized pharmacological and toxicological aspects of CNTs to vascular systems, because the vascular systems are important targets for CNTs during manufacturing process, daily contact and biomedical uses. Functionalized CNTs could be used as novel nanoplateforms to regulate angiogenesis for cancer therapy, as well as nanocarriers to cross blood brain barrier (BBB), one of the major obstacles to prevent the entering of therapeutic substances into brains. However, it has also been shown that inhalational or intravenous contact with CNTs might induce adverse vascular effects, such as progression of atherosclerotic plaque, vasomotor dysfunction, and changes of blood pressure and/or heart rate in laboratory animals, although currently there are only limited reports obtained from CNT-exposed human beings and the results are inconclusive. The mechanisms associated with the vascular toxicity of CNTs remain poorly understood, and it appears that multiple signaling pathways are likely to be involved. The toxicity of CNTs to vascular systems might be reduced by controlling the physicochemical properties of CNTs, particularly lengths, diameters and surface chemistry. At present, the beneficial and adverse effects of CNTs to vascular systems are still largely unknown and require further extensive studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Yingmei Luo
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
20
|
Li X, Tang Y, Chen C, Qiu D, Cao Y. PEGylated gold nanorods are not cytotoxic to human endothelial cells but affect kruppel-like factor signaling pathway. Toxicol Appl Pharmacol 2019; 382:114758. [PMID: 31521728 DOI: 10.1016/j.taap.2019.114758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Gold (Au) nanomaterials (NMs), particularly those with PEG surface functionalization, are generally considered to be biocompatible for biomedical applications due to relatively low cytotoxicity. Herein, we investigated the toxicity of PEGylated Au nanorods (NRs) to human umbilical vein endothelial cells (HUVECs), a commonly used in vitro model for human endothelium. We found a previously unknown effect that up to 10 μg/mL Au NRs, albeit not cytotoxic, decreased the mRNA and protein levels of kruppel-like factor 2 (KLF2), a transcription factor with well-documented vasoprotective effects. The results from PCR array showed that a number of genes associated with risk of cardiovascular diseases were altered by Au NRs, and several genes are downstream genes of KLF2 according to ingenuity pathway analysis (IPA). These effects could be observed with or without the presence of inflammatory stimuli lipopolysaccharide (LPS), which suggests a pre-existing inflammatory state is not required for Au NRs to alter KLF2 signaling pathway. We further identified that Au NRs significantly decreased eNOS mRNA/p-eNOS proteins as well as increased MCP-1 mRNA/sMCP-1 release, which are targets of KLF2. Combined, our data revealed a novel pathway that PEGylated Au NPs at non-cytotoxic concentrations might alter KLF leading to the increase of risk of cardiovascular diseases in human endothelial cells. Given the importance of KLF in vascular homeostasis, our data indicate that it is necessary to evaluate the influence of engineered NPs to KLF signaling pathways, especially for NPs with biomedical uses.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Yuanfang Tang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Dexin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan 430070, People's Republic of China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
21
|
Madhusoodan AP, Das K, Mili B, Kumar K, Kumar A, Saxena AC, Singh P, Dutt T, Bag S. In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. ACTA ACUST UNITED AC 2019; 24:e00387. [PMID: 31799142 PMCID: PMC6881647 DOI: 10.1016/j.btre.2019.e00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
Nanotopography of culture substrate acts as a positive cue in cell-biomaterial based tissue regeneration. Considering the potentiality of carbon nanotubes (CNTs) this study was designed to evaluate its two functionalized form by an in vitro culture condition using canine mesenchymal stem cells as cellular model. Cells were isolated and its behaviour, proliferation and differentiation processes were elucidated onto CNT substrates. Beside the variations in cellular behaviour it was remarkably noted that even though proliferation was reduced but osteogenic and chondrogenic differentiation was enhanced over multi-walled CNTs, whereas neuronal differentiation was better supported by single walled CNTs as evidenced by our cytochemical, immunocytochemical, gene expression and flow cytometry assays. The former one was noticed more cytocompatible by our different apoptosis studies. The outcome of these experiments collectively indicated that hydroxylated functionalized CNTs could be a potential scaffold constituent for future experimentations as well as for the application in regenerative medicine.
Collapse
Affiliation(s)
- A P Madhusoodan
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kinsuk Das
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhabesh Mili
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kuldeep Kumar
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ajay Kumar
- Biochemistry and Food Science Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A C Saxena
- Division of Surgery, Izatnagar, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Praveen Singh
- Biophysics, Electron Microscopy and Instrumentation Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sadhan Bag
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
22
|
Liang Y, Xie M, Li J, Liu L, Cao Y. Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages. Dose Response 2019; 17:1559325819865713. [PMID: 31384242 PMCID: PMC6657132 DOI: 10.1177/1559325819865713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Polyphenols as typical food components can influence the colloidal properties and internalization of nanomaterials (NMs) into mammalian cells. Recently, we found that 3-hydroxyflavone (H3) promoted intracellular Zn ions in ZnO nanoparticle (NP) exposed Caco-2 and HepG2 cells. However, it is unclear if H3 could affect the internalization of metal-based NMs with different morphologies. This study investigated the influence of H3 on colloidal aspects of Ag NPs and Ag nanoflakes (NFs) as well as the internalization of Ag NMs into THP-1 macrophages. 3-Hydroxyflavone at 50 μM promoted the solubility and altered hydrodynamic size, polydispersity index, and ζ potential of Ag NPs and Ag NFs, which indicated that H3 could affect the colloidal stability of Ag NMs. Only H3 but not Ag NMs significantly decreased mitochondrial activities of THP-1 macrophages. The internalization of Ag NMs was markedly increased due to the presence of H3. 3-Hydroxyflavone also exhibited antioxidative properties as it reduced intracellular reactive oxygen species and promoted the activities of ABC transporters as it reduced retention of Calcein in Ag NM-exposed THP-1 macrophages. We concluded that H3 promoted the internalization of Ag NMs into macrophages probably by altering the colloidal stability of Ag NMs and consequently NM-macrophage interactions.
Collapse
Affiliation(s)
- Yongqi Liang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Min Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| |
Collapse
|
23
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|