1
|
Sun F, Miao M, Li W, Lan XB, Yu JQ, Zhang J, An Z. Electrochemical oxidative dehydrogenative annulation of 1-(2-aminophenyl)pyrroles with cleavage of ethers to synthesize pyrrolo[1,2- a]quinoxaline derivatives. Org Biomol Chem 2024; 22:472-476. [PMID: 38099809 DOI: 10.1039/d3ob01867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
An array of pyrrolo[1,2-a]quinoxaline derivatives were achieved with moderate to good yields via the electrochemical redox reaction, which includes the functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds. In this atom economic reaction, THF was used as both a reactant and a solvent, and H2 was the sole by-product.
Collapse
Affiliation(s)
- Fengkai Sun
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Wenxue Li
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu An
- College of Pharmacy, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Sheng X, Xian J, Liu S, Zhang X, Li B, Wang J, Chen X, Xie F. Green Synthesis of Pyrrolo[1,2-α]quinoxalines by Palladium-Catalyzed Transfer Hydrogenation with Nitriles as Carbon Synthons. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Liu H, Mai X, Xian J, Liu S, Zhang X, Li B, Chen X, Li Y, Xie F. Construction of Spirocyclic Pyrrolo[1,2- a]quinoxalines via Palladium-Catalyzed Hydrogenative Coupling of Phenols and Nitroarenes. J Org Chem 2022; 87:16449-16457. [PMID: 36455265 DOI: 10.1021/acs.joc.2c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The replacement of fossil resources with biomass resources in the construction of N-heterocycles is rapidly attracting research interest. Herein, we report palladium-catalyzed selective hydrogenative coupling of nitroarenes and phenols based on a transfer hydrogenation strategy, allowing straightforward access to spirocyclic pyrrolo- and indolo-fused quinoxalines, a class of compounds found in numerous natural alkaloids. The synthetic protocol is characterized by a broad substrate scope and the utilization of biomass-derived reactants and commercially available catalysts. In such transformations, high-pressure and explosive hydrogen are not required. This report provides a new protocol for converting biomass-derived phenols into value-added nitrogen-containing chemicals.
Collapse
Affiliation(s)
- Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiaomin Mai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Jiayi Xian
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Shuting Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| |
Collapse
|
4
|
Le HX, Nguyen TT. Recent Examples in the Synthesis and Functionalization of C−H Bonds in Pyrrolo/Indolo [1,2‐
a
]Quinoxalines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huy X. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
5
|
Gorle S, L VR, Y C, A. V DR, Mekala R, Tadiparthi K, Raghunadh A. A simple and efficient synthesis of imidazoquinoxalines and spiroquinoxalinones via pictect-spengler reaction using Wang resin. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2015783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Simhachalam Gorle
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
- Department of Chemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | - Vaikunta Rao L
- Department of Chemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | - Chiranjeevi Y
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Dhanunjaya Rao A. V
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Ramamohan Mekala
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | | | - Akula Raghunadh
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| |
Collapse
|
6
|
Guo Q, Chen J, Shen G, Lu G, Yang X, Tang Y, Zhu Y, Wu S, Fan B. Tetrabutylammonium Bromide-Catalyzed Transfer Hydrogenation of Quinoxaline with HBpin as a Hydrogen Source. J Org Chem 2021; 87:540-546. [PMID: 34905381 DOI: 10.1021/acs.joc.1c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free environmentally benign, simple, and efficient transfer hydrogenation process of quinoxaline has been developed using the HBpin reagent as a hydrogen source. This reaction is compatible with a variety of quinoxalines offering the desired tetrahydroquinoxalines in moderate-to-excellent yields with Bu4NBr as a noncorrosive and low-cost catalyst.
Collapse
Affiliation(s)
- Qi Guo
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Jingchao Chen
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming 600091, China
| | - Guoli Shen
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Guangfu Lu
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Xuemei Yang
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yan Tang
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd., Qingfeng Industrial Park, Lufeng 651200, Yunnan, China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd., Qingfeng Industrial Park, Lufeng 651200, Yunnan, China
| | - Baomin Fan
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| |
Collapse
|
7
|
Li S, Ren J, Ding C, Wang Y, Ma C. N, N-Dimethylformamide as Carbon Synthons for the Synthesis of N-Heterocycles: Pyrrolo/Indolo[1,2- a]quinoxalines and Quinazolin-4-ones. J Org Chem 2021; 86:16848-16857. [PMID: 34807611 DOI: 10.1021/acs.joc.1c02067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N,N-dimethylformamide (DMF) as synthetic precursors contributing especially the methyl, acyl, and amino groups has played a significant role in heterocycle syntheses and functionalization. In this protocol, a wide range of pyrrolo/indolo[1,2-a]quinoxalines and quinazolin-4-ones were obtained in moderate to good yields by using elemental iodine without any metal or peroxides. We considered that N-methyl and N-acyl of DMF participate and complete the reaction separately through different mechanisms, which displayed potential still to be explored of DMF.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jianing Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengcheng Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yishou Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
8
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
9
|
Hernández‐Ruiz R, Rubio‐Presa R, Suárez‐Pantiga S, Pedrosa MR, Fernández‐Rodríguez MA, Tapia MJ, Sanz R. Mo-Catalyzed One-Pot Synthesis of N-Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituent-Tuned Photophysical Properties. Chemistry 2021; 27:13613-13623. [PMID: 34288167 PMCID: PMC8518888 DOI: 10.1002/chem.202102000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/26/2022]
Abstract
A catalytic domino reduction-imine formation-intramolecular cyclization-oxidation for the general synthesis of a wide variety of biologically relevant N-polyheterocycles, such as quinoxaline- and quinoline-fused derivatives, and phenanthridines, is reported. A simple, easily available, and environmentally friendly dioxomolybdenum(VI) complex has proven to be a highly efficient and versatile catalyst for transforming a broad range of starting nitroarenes involving several redox processes. Not only is this a sustainable, step-economical as well as air- and moisture-tolerant method, but also it is worth highlighting that the waste byproduct generated in the first step of the sequence is recycled and incorporated in the final target molecule, improving the overall synthetic efficiency. Moreover, selected indoloquinoxalines have been photophysically characterized in cyclohexane and toluene with exceptional fluorescence quantum yields above 0.7 for the alkyl derivatives.
Collapse
Affiliation(s)
- Raquel Hernández‐Ruiz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Rubén Rubio‐Presa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Samuel Suárez‐Pantiga
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - María R. Pedrosa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Manuel A. Fernández‐Rodríguez
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
- Current address: Departamento de Química Orgánica y Química InorgánicaCampus Científico-TecnológicoFacultad de FarmaciaUniversidad de AlcaláAutovía A-II, Km 33.128805-Alcalá de HenaresMadridSpain
| | - M. José Tapia
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Roberto Sanz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| |
Collapse
|
10
|
Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
|
12
|
|
13
|
Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021; 26:1055. [PMID: 33670436 PMCID: PMC7923122 DOI: 10.3390/molecules26041055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Li S, Feng L, Ma C. Simple and green synthesis of benzimidazoles and pyrrolo[1,2- a]quinoxalines via Mamedov heterocycle rearrangement. NEW J CHEM 2021. [DOI: 10.1039/d1nj01251g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This method is metal and catalyst-free and only solvent (HOAc) is required with H2O as the sole byproduct.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| |
Collapse
|
15
|
Chun S, Ahn J, Putta RR, Lee SB, Oh DC, Hong S. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. J Org Chem 2020; 85:15314-15324. [DOI: 10.1021/acs.joc.0c02145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
17
|
Li S, Xie C, Chu X, Dai Z, Feng L, Ma C. KI-Mediated One-Pot Transition-Metal-Rree Synthesis of 4-Phenylpyrrolo[1,2-a
]quinoxalines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Caixia Xie
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 255049 Zibo P.R. China
| | - Xianglong Chu
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Zhen Dai
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| |
Collapse
|
18
|
Bismuth trichloride-catalyzed oxy-Michael addition of water and alcohol to α,β-unsaturated ketones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Wang DK, Fang YL, Zhang J, Guan YT, Huang XJ, Zhang J, Li Q, Wei WT. Radical cyclizations of enynes/dienes with alcohols in water using a green oxidant. Org Biomol Chem 2020; 18:8491-8495. [DOI: 10.1039/d0ob01902j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple, eco-friendly, and efficient methodology for performing radical cyclizations of enynes/dienes with alcohols in water has been established.
Collapse
Affiliation(s)
- Dong-Kai Wang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Yi-Lin Fang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Jian Zhang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Yu-Tao Guan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Xun-Jie Huang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Jianfeng Zhang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Wen-Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| |
Collapse
|
20
|
|
21
|
Peng S, Hu D, Hu J, Lin Y, Tang S, Tang H, He J, Cao Z, He W. Metal‐Free C3 Hydroxylation of Quinoxalin‐2(1
H
)‐ones in Water. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sha Peng
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Die Hu
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Jia‐Li Hu
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang 421001 People's Republic of China
| | - Shan‐Shan Tang
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Hai‐Shan Tang
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Jun‐Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Wei‐Min He
- Department of ChemistryHunan University of Science and Engineering Yongzhou 425100 People's Republic of China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| |
Collapse
|