1
|
Wang J, Liu W, Liu Z, Yu X, Zhang H, Du S. Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au. Mikrochim Acta 2025; 192:52. [PMID: 39751952 DOI: 10.1007/s00604-024-06917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection. Additionally, the excellent photothermal performance of the PB@Au catalytic system was utilized for multimodal sensitive detection in the multimodal nanoenzyme-linked aptamer assay. Moreover, the utilization of both catalytic and photothermal dual-mode detection was mutually verified to enhance detection accuracy. Under optimal conditions, the detection of S. typhimurium in a sample can be completed in 2 h. The developed assay exhibited exceptional specificity in detecting S. typhimurium, with an impressive detection limit down to 23 CFU·mL-1. Furthermore, the assay exhibited excellent repeatability and stability. Real sample analyses have proven the high reliability and practicality of this assay, highlighting its significant potential for applications in food safety testing.
Collapse
Affiliation(s)
- Jingwen Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wenxiu Liu
- Rongcheng Market Supervision and Administration Comprehensive Service Center, Weihai, 264300, People's Republic of China
| | - Zhenshuo Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaodong Yu
- Shandong Sinogen Food Company Limited, Weifang, 261200, People's Republic of China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
2
|
Zhao C, Ma M, Yang J, Ye Z, Ma P, Song D. "Hedgehog Ball"-Shaped Nanoprobes for Multimodal Detection and Imaging of Inflammatory Markers in Osteosarcoma Using Fluorescence and Electrochemiluminescence. Anal Chem 2024; 96:16053-16062. [PMID: 39316735 DOI: 10.1021/acs.analchem.4c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Inflammation can affect the progression of cancer at tumor sites, such as in osteosarcoma, by intensifying metastasis and complicating outcomes. The current diagnostic methods lack the specificity and sensitivity required for early and accurate detection, particularly in differentiating between inflammation-induced changes and tumor activities. To address this, a novel "hedgehog ball"-shaped nanoprobe, Fe3O4@Au-pep-CQDs, was developed and designed to enhance the detection of caspase-1, a key marker of inflammation. This magnetic nanoprobe facilitates simultaneous fluorescence (FL) and electrochemiluminescence (ECL) detection. Magnetic separation minimizes the quenching of nanoparticles in solution and eliminates the need for frequent electrode replacement in ECL tests, thereby simplifying diagnostic procedures. The experimental results showed that in the detection of caspase-1, the nanoprobe had a detection limit of 0.029 U/mL (FL) and 0.033 U/mL (ECL) and had a dynamic range of 0.05 to 1.0 U/mL. Additionally, the nanoprobe achieved high recovery rates of 94.36 to 102.44% (FL) and 94.36-100.12% (ECL) in spiked biological samples. Furthermore, the nanoprobe's capabilities were extended to in vivo bioimaging to provide direct, intuitive visualization of biological processes. These novel nanoprobes were able to significantly enhance the accurate detection of inflammation at tumor sites, thereby optimizing both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
3
|
Nikitina M, Khramtsov P, Bochkova M, Rayev M. Development and performance of NLISA for C-reactive protein detection based on Prussian blue nanoparticle conjugates. Anal Bioanal Chem 2024; 416:3097-3106. [PMID: 38635074 DOI: 10.1007/s00216-024-05268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Prussian blue nanoparticles (PBNPs), also called nanozymes, are very attractive as an alternative to horseradish peroxidase in immunoassay development due to their simple and low-cost synthesis, stability and high catalytic activity. Today, there is a method for highly effective PBNP synthesis based on the reduction of an FeCl3/K3[Fe(CN)6] mixture by hydrogen peroxide. However, there is a lack of research showcasing the use of these highly effective PBNPs for specific target detection in clinical settings, as well as a lack of comprehensive comparisons with conventional methods. To address this gap, we prepared diagnostic reagents based on highly effective PBNPs by modifying them using gelatin and attaching anti-C-reactive protein (CRP) monoclonal antibodies through cross-linking with glutaraldehyde. As a result, a solid-phase colorimetric immunoassay in a sandwich format (nanozyme-linked immunosorbent assay [NLISA]) using highly effective PBNPs as a label for CRP detection has been demonstrated for the first time. The assay demonstrated a detection limit of 21.8 pg/mL, along with acceptable selectivity, precision (CV < 25%) and accuracy (the recovery index was within acceptable limits (75-125%) for LLOQ /ULOQ range. The analytical performance of this method is on par with sensitive assays developed in the last 5 years. Notably, the results obtained from NLISA align with those from an immunofluorescence assay conducted by a certified clinical laboratory. Furthermore, this study underscores the technological challenges involved in constructing an analysis that necessitate further exploration.
Collapse
Affiliation(s)
- Maria Nikitina
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia.
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| |
Collapse
|
4
|
Spherical covalent organic framework and gold nanoparticles modified 3D-printed nanocarbon electrode for the sensor of acetaminophen. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Lu Z, Liu W, Cai Y, Zhao T, Cui M, Zhang H, Du S. Salmonella typhimurium strip based on the photothermal effect and catalytic color overlap of PB@Au nanocomposite. Food Chem 2022; 385:132649. [PMID: 35278735 DOI: 10.1016/j.foodchem.2022.132649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
This work reports a sensitive and accurate multimode detection method to detect Salmonella typhimurium using inherent color, photothermal and catalytic properties of Prussian blue@gold nanoparticles (PB@Au). The inherent color of PB@Au can realize direct visual detection while the temperature increase (ΔT) of it can realize sensitive and quantitative photothermal detection. Moreover, catalytic coloration detection is applied to further amplify detection signal. The risk limit, prevention and control of Salmonella typhimurium can be more intuitively displayed through catalytic color overlap degree between PB@Au and catalytic product. The sensitivity of method is improved through photothermal and catalytic coloration detection (101 CFU·mL-1) compared with direct visual detection (102 CFU·mL-1). The multimode detection improves the accuracy of method, and exhibits good repeatability, acceptable selectivity and stability. This method is also successfully applied in real samples, displaying its good practical applicability.
Collapse
Affiliation(s)
- Zhang Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Wenxiu Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yun Cai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mengqi Cui
- Zibo Institute for Food and Drug Control, Zibo 255000, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
6
|
Wang L, Xu A, Yuan J, Jiang F, Li M, Qi W, Li Y, Lin J. Hourglass-mimicking biosensor based on disposable centrifugal tube for bacterial detection in large-volume sample. Biosens Bioelectron 2022; 216:114653. [DOI: 10.1016/j.bios.2022.114653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/13/2022]
|
7
|
Li R, Li X, Su L, Qi H, Yue X, Qi H. Label‐free Electrochemical Aptasensor for the Determination of Serotonin. ELECTROANAL 2022. [DOI: 10.1002/elan.202100373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rong Li
- School of Chemistry and Chemical Engineering Yan'an University Yan'an 716000 P. R. China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering Yan'an University Yan'an 716000 P. R. China
| | - Liu Su
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Hetong Qi
- School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xuanfeng Yue
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| |
Collapse
|
8
|
Li X, Guo W, Xu R, Song Z, Ni T. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120983. [PMID: 35149482 DOI: 10.1016/j.saa.2022.120983] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the interaction between gold nanoparticles (AuNPs) and proteins (including lysozyme, trypsin, pepsin, γ-globulin and hemoglobin) was investigated by UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and protein activity assay. AuNPs was synthesized using reduction of HAuCl4 with sodium citrate. The formation of AuNPs was confirmed from the characteristic surface plasmon resonance band at 521 nm and transmission electron microscopy revealed the average particle size was about 10 nm. The results reveal that AuNPs can interact with proteins to form a "protein corona (PC)", but the protein concentration required to form a relatively stable PC is not the same. The quenching mechanism of proteins by AuNPs is arisen from static quenching. The binding constants of AuNPs with proteins are in the range from 106 to 1010 L mol-1, and the order is pepsin > γ-globulin > hemoglobin > trypsin > lysozyme at 298 K. Van der Waals forces and hydrogen bonds are the main forces for the lysozyme-AuNPs system. The interaction between trypsin/pepsin/γ-globulin/hemoglobin and AuNPs is mainly by hydrophobic interaction. The addition of AuNPs has an effect on the secondary structure of proteins as confirmed from CD spectra. The change in secondary structure of different proteins is different and seems to have little relation with the binding constant. The activity of lysozyme/trypsin/pepsin decreases with the addition of AuNPs.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Wei Guo
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
9
|
Zhu L, Lu Z, Zhang L, He N. Seedless synthesis of gold nanorods with tunable plasmonic peaks beyond 1300 nm. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Jiang Y, Guo Z, Wang M, Cui J, Miao P. Construction of fluorescence logic gates responding to telomerase and miRNA based on DNA-templated silver nanoclusters and the hybridization chain reaction. NANOSCALE 2022; 14:612-616. [PMID: 34981798 DOI: 10.1039/d1nr05622k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we have developed novel fluorescence logic gates for simultaneous analysis of telomerase activity and miRNA. An imperfectly complementary duplex is assembled which can be destroyed by telomerase catalyzed extension or miRNA mediated strand displacement. The released single-stranded DNA further initiates the subsequent hybridization chain reaction. The output response of the OR gate originates from fuel strand-templated silver nanoclusters (AgNCs). On the other hand, a three-way junction is constructed for the AND gate, which can be destroyed in the presence of miRNA and telomerase. The finally released DNA is also applied to trigger the hybridization chain reaction for the generation of a fluorescence response. The constructed logic gates are sensitive and reliable in the analysis of telomerase and miRNA for potential practical applications.
Collapse
Affiliation(s)
- Yiting Jiang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Ji Hua Laboratory, Foshan 528200, China
| | | | - Jinjiang Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Ji Hua Laboratory, Foshan 528200, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
11
|
Kausaite-Minkstimiene A, Kaminskas A, Popov A, Ramanavicius A, Ramanaviciene A. Development of a new biocathode for a single enzyme biofuel cell fuelled by glucose. Sci Rep 2021; 11:18568. [PMID: 34535709 PMCID: PMC8448768 DOI: 10.1038/s41598-021-97488-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
In this study, we reported the development of Prussian blue (PB), poly(pyrrole-2-carboxylic acid) (PPCA), and glucose oxidase (GOx) biocomposite modified graphite rod (GR) electrode as a potential biocathode for single enzyme biofuel cell fuelled by glucose. In order to design the biocathode, the GR electrode was coated with a composite of PB particles embedded in the PPCA shell and an additional layer of PPCA by cyclic voltammetry. Meanwhile, GOx molecules were covalently attached to the carboxyl groups of PPCA by an amide bond. The optimal conditions for the biocathode preparation were elaborated experimentally. After optimization, the developed biocathode showed excellent electrocatalytic activity toward the reduction of H2O2 formed during GOx catalyzed glucose oxidation at a low potential of 0.1 V vs Ag/AgCl, as well as good electrochemical performance. An electrocatalytic current density of 31.68 ± 2.70 μA/cm2 and open-circuit potential (OCP) of 293.34 ± 15.70 mV in O2-saturated 10 mM glucose solution at pH 6.0 were recorded. A maximal OCP of 430.15 ± 15.10 mV was recorded at 98.86 mM of glucose. In addition, the biocathode showed good operational stability, maintaining 95.53 ± 0.15% of the initial response after 14 days. These results suggest that this simply designed biocathode can be applied to the construction of a glucose-powered single enzyme biofuel cell.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania.
| | - Algimantas Kaminskas
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Anton Popov
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
12
|
Gao F, Chu Y, Ai Y, Yang W, Lin Z, Wang Q. Hybridization induced ion-barrier effect for the label-free and sensitive electrochemical sensing of Hepatocellular Carcinoma biomarker of miRNA-122. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Xie Y, Chen Y, Sun X, Wang Y, Wang Y. Conducting polymer engineered covalent organic framework as a novel electrochemical amplifier for ultrasensitive detection of acetaminophen. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Ma F, Ge G, Fang Y, Ni E, Su Y, Cai F, Xie H. Prussian blue-doped PAMAM dendrimer nanospheres for electrochemical immunoassay of human plasma cardiac troponin I without enzymatic amplification. NEW J CHEM 2021; 45:9621-9628. [DOI: 10.1039/d1nj01506k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Rapid and accurate identification of cardiac troponin I (cTnl) in biological fluids is very essential for judging acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Fangfang Ma
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| | - Gaoshun Ge
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| | - Yizhen Fang
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| | - Erru Ni
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| | - Yuanyuan Su
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| | - Fan Cai
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| | - Huabin Xie
- Clinical Laboratory Department
- Xiamen Cardiovascular Hospital of Xiamen University
- Xiamen City
- China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease
| |
Collapse
|
15
|
Gu D, Liu Z, Wu H, An P, Zhi X, Yin Y, Liu W, Sun B. Dual catalytic cascaded nanoplatform for photo/chemodynamic/starvation synergistic therapy. Colloids Surf B Biointerfaces 2021; 199:111538. [PMID: 33383548 DOI: 10.1016/j.colsurfb.2020.111538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
In this study, manganese dioxide (MnO2) was attached to prussian blue (PB) by a one-pot method to prepare PBMO. Then, the GOD was loaded onto PBMO through the electrostatic interaction of hyaluronic acid (HA) to form tumor-targeted nanoplatform (PBMO-GH). Hydrogen peroxide (H2O2) and gluconic acid were produced through the GOD-catalyzed enzymatic reaction. Meanwhile, PB could not only catalyze H2O2 for oxygen generation to further promote glucose consumption but also possess the property of photothermal conversion. As a result, glucose was continuously consumed to achieve the starvation therapy (ST), and the photothermal therapy (PTT) could be realized under near-infrared (NIR) light. Besides, the Mn2+ generated by the reaction of MnO2 with glutathione (GSH) could exert Fenton-like reaction to produce highly toxic hydroxyl radicals (·OH) from H2O2, which thereby realized self-reinforcing chemodynamic therapy (CDT). In vitro and in vivo experiments demonstrated that PBMO-GH could effectively inhibit the growth of tumor cells via ST/CDT/PTT synergistic effect. Therefore, the as-prepared nanoplatform for multi-modal therapy will provide a promising paradigm for overcoming cancer.
Collapse
Affiliation(s)
- Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Zhikun Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xu Zhi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yujie Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
16
|
Wang L, Song J, Wang X, Qi H, Gao Q, Zhang C. Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence biosensing method. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Ma Y, Hong J, Ding Y. Biological Behavior Regulation of Gold Nanoparticles via the Protein Corona. Adv Healthc Mater 2020; 9:e1901448. [PMID: 32080976 DOI: 10.1002/adhm.201901448] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/07/2019] [Indexed: 12/15/2022]
Abstract
One of the difficulties in the translation of gold nanoparticles (GNPs) into clinical practice is the formation of the protein corona (PC) that causes the discrepancy between the in vitro and in vivo performance of GNPs. The PC formed on the surface of GNPs gives them a biological identity instead of an initial synthetic one. In most instances, this biological identity increases the particle size, leads to more clearance by the reticuloendothelial system, and causes less uptake by target cells. However, the performance of GNPs can still be improved by rewriting their original surface chemistry via the PC. This review specifically focuses on discussing the main influence factors, including the biological environment and physicochemical properties of GNPs, which affect the production and status of the PC. The status of the PC such as the amount, thickness, and composition subsequently influence the biological behavior of GNPs, especially their cellular uptake, cytotoxicity, biodistribution, and tumor targeting. Further understanding and revealing the impacts of the PC on the biological behavior of GNPs can be a promising and important strategy to regulate and improve the performance of GNP-based biosystems in the future.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationChina Pharmaceutical University Nanjing 210009 China
| | - Jin Hong
- Key Laboratory of Biomedical Functional MaterialsSchool of SciencesMinistry of EducationChina Pharmaceutical University Nanjing 211198 China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|