1
|
Romagnoli R, De Ventura T, Manfredini S, Baldini E, Supuran CT, Nocentini A, Brancale A, Bortolozzi R, Manfreda L, Viola G. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J Enzyme Inhib Med Chem 2023; 38:2270180. [PMID: 37850364 PMCID: PMC10586084 DOI: 10.1080/14756366.2023.2270180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Andrea Brancale
- Vysoká Škola Chemicko-Technologická v Praze, Prague, Czech Republic
| | - Roberta Bortolozzi
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, Section of Pharmacology, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| |
Collapse
|
2
|
Gao H, Zhang JY, Zhao LJ, Guo YY. Synthesis and clinical application of small-molecule inhibitors and PROTACs of anaplastic lymphoma kinase. Bioorg Chem 2023; 140:106807. [PMID: 37651895 DOI: 10.1016/j.bioorg.2023.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Pharmacological interventions that specifically target protein products of oncogenes in tumors have surfaced as a propitious therapeutic approach. Among infrequent genetic alterations, rearrangements of the anaplastic lymphoma kinase (ALK) gene, typically involving a chromosome 2 inversion that culminates in a fusion with the echinoderm microtubule-associated protein like 4 (EML4), lead to anomalous expression and activation of ALK. The inhibition of autophosphorylation and subsequent blockade of signal transduction by ALK tyrosine kinase inhibitors (TKIs) has been observed to elicit anti-tumor effects. Currently, four generations of ALK-positive targeted drugs have been investigated, providing a promising outlook for patients. The aim of this review is to furnish a comprehensive survey of the synthesis and clinical application of prototypical small-molecule ALK inhibitors in both preclinical and clinical phases, offering guidance for further development of ALK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing-Yi Zhang
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; College of Chemistry and Chemical Engineering, Zhengzhou Normal University 450044, China.
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Wang L, Wang Y, Yu Y, Liu D, Zhao J, Zhang L. Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. Molecules 2023; 28:molecules28062583. [PMID: 36985555 PMCID: PMC10052767 DOI: 10.3390/molecules28062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor–residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).
Collapse
|
4
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
5
|
Yuan XH, Wang S, Wang XN, Yu B, Liu HM. Synthesis of Natural Product-Like Tricyclic Higher-Carbon Sugar Nucleosides. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1731300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Because of the structural novelty and interesting biological profiles, the synthesis of higher-carbon sugars has been highly pursued. In this work, we first synthesized a series of structurally novel bis-uracil containing tricyclic higher-carbon sugar nucleosides (4a–e) using D-xylose as the starting material and the classical Vorbruggen glycosylation as the key synthetic step. The yields of the target compound were good. Unfortunately, despite the presence of pharmaceutically relevant uracil fragment, compounds 4a–e were inactive against the proliferation of several cancer cell lines (EC109, EC9706, PC-3, and MGC-803). Whether and how 4a–e functioned as anticancer agents would be further studied in our laboratory.
Collapse
Affiliation(s)
- Xiao-Han Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Yuan S, Feng SQ, Li AQ, Zuo JH, Zhang DQ, Xing YJ, Xie Z, Yu B, Liu HM. Design and synthesis of new indole containing biaryl derivatives as potent antiproliferative agents. Bioorg Chem 2021; 110:104821. [PMID: 33812156 DOI: 10.1016/j.bioorg.2021.104821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
A new series of indole containing biaryl derivatives were designed and synthesized, and further biological evaluations of their antiproliferative activity against cancer cell lines (MGC-803 and TE-1 cells) were also conducted. Of these synthesized biaryls, compound 4-methyl-2-((5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)methyl)quinazoline (23) performed as the most potent antiproliferative agent that inhibited cell viability of MGC-803 cells with an IC50 value of 8.28 µM. In addition, investigation of mechanism exhibited that the compound 4-methyl-2-((5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)methyl)quinazoline (23) could inhibit the expression of c-Myc and glycolysis related proteins, decrease the ATP and lactate production, and further induce apoptosis by activating the AMP-activated protein kinase (AMPK) and p53 signaling pathways.
Collapse
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Si-Qi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - An-Qi Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia-Hui Zuo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan-Qing Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yu-Jie Xing
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhiyu Xie
- College of Chemical and Materials Engineering, Xuchang University, No. 88, Bayi Road, Xuchang, Henan 461000, PR China.
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Yuan S, Zhang J, Zhang D, Wei D, Zuo J, Song J, Yu B, Liu HM. Cu(OTf) 2-Catalyzed Intramolecular Radical Cascade Reactions for the Diversity-Oriented Synthesis of Quinoline-Annulated Polyheterocyclic Frameworks. Org Lett 2021; 23:1445-1450. [PMID: 33560123 DOI: 10.1021/acs.orglett.1c00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compound libraries with high levels of structural diversity and novelty could cover underexploited chemical space and thus have been highly pursued in drug discovery. Herein, we report the first Cu(OTf)2-catalyzed intramolecular radical cascade reactions that enable the diversity-oriented synthesis of quinoline-annulated polyheterocyclic compounds (7 unique scaffolds, 66 examples) in an efficient manner. This work demonstrates an alternative route to access the natural product- and druglike compound collection with high levels of structural diversity and novelty.
Collapse
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Jingya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Danqing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Jiahui Zuo
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Jian Song
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| |
Collapse
|
8
|
Fu DJ, Li J, Yu B. Annual review of LSD1/KDM1A inhibitors in 2020. Eur J Med Chem 2021; 214:113254. [PMID: 33581557 DOI: 10.1016/j.ejmech.2021.113254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising target for the discovery of specific inhibitors as antitumor drugs. Based on the source of compounds, all LSD1 inhibitors in this review are divided into two categories: natural LSD1 inhibitors and synthetic LSD1 inhibitors. This review highlights the research progress of LSD1 inhibitors with the potential to treat cancer covering articles published in 2020. Design strategies, structure-activity relationships, co-crystal structure analysis and action mechanisms are also highlighted.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Wang S, Yuan XH, Wang SQ, Zhao W, Chen XB, Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur J Med Chem 2021; 214:113218. [PMID: 33540357 DOI: 10.1016/j.ejmech.2021.113218] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Considerable progress has been made in the development of anticancer agents over the past few decades, and a lot of new anticancer agents from natural and synthetic sources have been produced. Among heterocyclic compounds, pyrimidine-fused bicyclic heterocycles possess a variety of biological activities such as anticancer, antiviral, etc. To date, 147 pyrimidine-fused bicyclic heterocycles have been approved for clinical assessment or are currently being used in clinic, 57 of which have been approved by FDA for clinical treatment of various diseases, and 22 of them are being used in the clinic for the treatment of different cancers. As the potentially privileged scaffolds, pyrimidine-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy. This review aims to provide an overview of the anticancer applications and synthetic routes of 22 approved pyrimidine-fused bicyclic heterocyclic drugs in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
10
|
Liu T, Song S, Wang X, Hao J. Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer. Eur J Med Chem 2021; 210:112954. [PMID: 33158576 DOI: 10.1016/j.ejmech.2020.112954] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Despite dramatic advances in cancer research and therapy, breast cancer remains a tricky health problem and represents a top biomedical research priority. Nowadays, breast cancer is still the leading cause of malignancy-related deaths in women, and incidence and mortality rates of it are expected to increase significantly the next years. Currently more and more researchers are interested in the study of breast cancer by its arising in young women. The common treatment options of breast cancer are chemotherapy, immunotherapy, hormone therapy, surgery, and radiotherapy. Most of them require chemical agents, such as PARP inhibitors, CDK4/6 inhibitors, and HER2 inhibitors. Recent studies suggest that some targets or pathways, including BRD4, PLK1, PD-L1, HDAC, and PI3K/AKT/mTOR, are tightly related to the occurrence and development of breast cancer. This article reviews the interplay between these targets and breast cancer and summarizes the progress of current research on small molecule inhibitors of these anti-breast cancer targets. The review aims to provide structural and theoretical basis for designing novel anti-breast cancer agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China.
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Xu Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jifu Hao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| |
Collapse
|
11
|
Huo JL, Wang S, Yuan XH, Yu B, Zhao W, Liu HM. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur J Med Chem 2020; 211:113108. [PMID: 33385852 DOI: 10.1016/j.ejmech.2020.113108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
In this work, we reported the discovery of compound 6i with potent antiproliferative activity against MGC-803. Among these compounds, the most potent compound 6i could effectively inhibit MGC-803 (IC50 = 0.96 μM), being around 38-fold selectivity over GES-1. Further underlying mechanism studies indicated that 6i inhibited the colony formation, migration of MGC-803, and exerted anti-proliferative effect by inducing G0/G1 phase arrest in MGC-803 cells. Cell apoptosis was induced by 6i through activating mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway. 6i induced cell apoptosis by elevating the level of ROS. Also, 6i up-regulated pro-apoptotic Bax and p53 level, while down-regulating anti-apoptotic Bcl-2 protein expression. Furthermore, acute toxicity experiment indicated 6i exhibited good safety in vivo. Therefore, 6i may be a template for future development of [1,2,4]triazolo [1,5-a]pyrimidine-based anti-cancer agents.
Collapse
Affiliation(s)
- Jin-Ling Huo
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuai Wang
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wen Zhao
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Wang S, Wang SQ, Teng QX, Yang L, Lei ZN, Yuan XH, Huo JF, Chen XB, Wang M, Yu B, Chen ZS, Liu HM. Structure-Based Design, Synthesis, and Biological Evaluation of New Triazolo[1,5- a]Pyrimidine Derivatives as Highly Potent and Orally Active ABCB1 Modulators. J Med Chem 2020; 63:15979-15996. [PMID: 33280384 DOI: 10.1021/acs.jmedchem.0c01741] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABCB1 is a promising therapeutic target for overcoming multidrug resistance (MDR). In this work, we reported the structure-based design of triazolo[1,5-a]pyrimidines as new ABCB1 modulators, of which WS-691 significantly increased sensitization of ABCB1-overexpressed SW620/Ad300 cells to paclitaxel (PTX) (IC50 = 22.02 nM). Mechanistic studies indicated that WS-691 significantly increased the intracellular concentration of PTX and [3H]-PTX while decreasing the efflux of [3H]-PTX in SW620/Ad300 cells by inhibiting the efflux function of ABCB1. The cellular thermal shift assay suggested that WS-691 could stabilize ABCB1 by directly binding to ABCB1. WS-691 could stimulate the activity of ABCB1 ATPase but had almost no inhibitory activity against CYP3A4. Importantly, WS-691 increased the sensitivity of SW620/Ad300 cells to PTX in vivo without observed toxicity. Collectively, WS-691 is a highly potent and orally active ABCB1 modulator capable of overcoming MDR. The triazolo[1,5-a]pyrimidine may be a promising scaffold for developing more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Feng Huo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Shahnavaz Z, Khaligh NG, Zaharani L, Johan MR, Hamizi NA. The structure elucidation of new ionic liquid and its application for the synthesis of a series of novel triazolo[1,5-a]pyrimidine scaffolds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Yang G, Li Y, Zhao Y, Ouyang L, Chen Y, Liu B, Liu J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur J Med Chem 2020; 209:112917. [PMID: 33077263 DOI: 10.1016/j.ejmech.2020.112917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
Atg4, a pivotal macroautophagy/autophagy-related cysteine protein family, which regulate autophagy through either cleaving Atg8 homologs for its further lipidation or delipidating Atg8 homologs from the autophagosome. There are four homologs, Atg4A, Atg4B, Atg4C, and Atg4D. Among them, an increasing amount of evidence indicates that Atg4B possessed superior catalytic efficiency toward the Atg8 substrate, as well as regulates autophagy process and plays a key role in the development of several human cancers. Recently, efforts have been contributed to the exploration of Atg4B inhibitors or activators. In this review, we comprehensively clarify the function of Atg4B in autophagy and cancer biology, as well as the relationship between pharmacological function and structure-activity of small molecule drugs targeting Atg4B. The development of novel drugs targeting Atg4B could be well applied in the clinical practice.
Collapse
Affiliation(s)
- Gaoxia Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jie Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Wang S, Ma XB, Yuan XH, Yu B, Xu YC, Liu HM. Discovery of new [1,2,4] Triazolo[1,5-a]Pyrimidine derivatives that Kill gastric cancer cells via the mitochondria pathway. Eur J Med Chem 2020; 203:112630. [PMID: 32683165 DOI: 10.1016/j.ejmech.2020.112630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are known as "powerhouse of cells" and play the role of a bridge in redox balance, cell apoptosis, and autophagy. ROS accumulation can cause mitochondria damage, while the injured mitochondria will further enhance ROS levels reciprocally. Herein, we synthesized a novel series of [1,2,4]triazolo[1,5-a]pyrimidine-based compounds 4a-4v and tested their anti-proliferation efficacy against gastric cancer cell line MGC-803. Among them, compounds 4o and 4p inhibited gastric cancer cells at micromolar level. Compound 4o caused G2/M arrest and induced mitochondria-dependent apoptosis in MGC-803 and SGC-7901. However, inhibiting apoptosis pathway cannot prevent the inhibitory activity of compound 4o against gastric cancer cell. To our surprising, ROS level was increased by compound 4o and elevation of ROS could be rescued by NAC. In accordance with that, NAC absolutely prevented the anti-proliferation efficacy of compound 4o. We further found that autophagy inhibitor CQ rather than 3-MA partially reversed inhibitory activity of compound 4o in MGC-803 cells. Taken together, compound 4o exhibited its anti-proliferative activity via increasing ROS level and inducing autophagy, thus leading to apoptosis of gastric cancer cells. Therefore, compound 4o may support further development of lead compounds for gastric cancer therapy via mitochondria pathway.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xu-Bin Ma
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yi-Chao Xu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Gazizov DA, Gorbunov EB, Rusinov GL, Ulomsky EN, Charushin VN. A New Family of Fused Azolo[1,5- a]pteridines and Azolo[5,1- b]purines. ACS OMEGA 2020; 5:18226-18233. [PMID: 32743198 PMCID: PMC7391858 DOI: 10.1021/acsomega.0c01849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 05/02/2023]
Abstract
The nitration of azolo[1,5-a]pyrimidin-7-amines with several nitration agents (such as acetic nitric anhydride, nitronium tetrafluoroborate, and a mixture of concentrated nitric acid and sulfuric acid) has been investigated. It has been shown that, depending on the conditions, the nitration of pyrazolopyrimidin-7-amines bearing electron-withdrawing groups in the pyrazole ring leads to nitration products in the pyrimidine and/or pyrazole ring. The nitration of triazolo[1,5-a]pyrimidin-7-amines with "nitrating mixture" has been optimized, thus allowing us to obtain a series of 6-nitro[1,2,4]triazolo[1,5-a]pyrimidin-7-amines, followed by their reduction into the corresponding [1,2,4]triazolo[1,5-a]pyrimidin-6,7-diamines (yields 86-89%). The latter have been subjected to heterocyclization by a variety of electrophilic compounds (such as CS2, glyoxal, triethyl orthoformate) with the formation of five- or six-membered annulated cycles.
Collapse
Affiliation(s)
- Denis A. Gazizov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Evgeny B. Gorbunov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Gennady L. Rusinov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Evgeny N. Ulomsky
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| |
Collapse
|
17
|
Shi XJ, Wang S, Li XJ, Yuan XH, Cao LJ, Yu B, Liu HM. Discovery of tofacitinib derivatives as orally active antitumor agents based on the scaffold hybridization strategy. Eur J Med Chem 2020; 203:112601. [PMID: 32682202 DOI: 10.1016/j.ejmech.2020.112601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023]
Abstract
In this work, a novel series of tofacitinib analogs were designed and synthesized based on the scaffold hybridization strategy and then evaluated for their antiproliferative activity toward three gastric cancer cell lines, leading to the identification of compound C18 which exhibited potent inhibitory activity against MGC-803 cell lines with an IC50 value of 2.68 μM. Compound C18 could effectively inhibit the colony formation, suppress the cell migration and induce apoptosis of MGC-803 cells through activating the p38 and JNK signaling pathways, while C18 showed no obvious effect on the cell cycle distribution in MGC-803 cells. In addition, C18 could initiate mitochondrial dysfunction of MGC-803 cells. Besides, in vivo antitumor studies indicated that C18 could inhibit gastric cancer tumor growth in vivo without obvious global toxicity.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xiao-Jing Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Juan Cao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Fang Y, Liao G, Guo H, Yu B, Liu HM. Synthesis of biologically relevant steroidal spiro β-lactams from dienamides through the cascade 4-endo N-cyclization/aerobic oxidation sequence. Steroids 2020; 159:108635. [PMID: 32169578 DOI: 10.1016/j.steroids.2020.108635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/26/2022]
Abstract
The steroid nucleus and β-lactam are prevalent in natural products and drug molecules, the compounds containing such fragments always possess diverse and interesting biological profiles. Presented here is an unprecedented cascade 4-endo N-cyclization/aerobic oxidation sequence that enables the synthesis of biologically relevant steroidal spiro β-lactams from dienamides. Of note, two continuous quaternary chiral centers were constructed simultaneously in this process, and the title compounds bearing the OH and CN groups are highly functionalized, allowing for late-stage transformations for construction of diverse compound library. The protocol has several advantages such as mild reaction conditions and short reaction time, therefore could serve as a new strategy for synthesizing β-lactams.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|