1
|
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem Rev 2023; 123:9265-9326. [PMID: 37432676 DOI: 10.1021/acs.chemrev.2c00685] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
One bottleneck hampering the widespread use of fuel cell vehicles, in particular of proton exchange membrane fuel cells (PEMFCs), is the high cost of the cathode where the oxygen reduction reaction (ORR) occurs, due to the current need of precious metals to catalyze this reaction. Electrochemists tackle this issue in the short/medium term by developing catalysts with improved utilization or efficiency of platinum, and in the longer term, by developing catalysts based on Earth-abundant elements. Considerable progress has been achieved in the initial performance of Metal-nitrogen-carbon (Metal-N-C) catalysts for the ORR, especially with Fe-N-C materials. However, until now, this high performance cannot be maintained for a sufficiently long time in an operating PEMFC. The identification and mitigation of the degradation mechanisms of Metal-N-C electrocatalysts in the acidic environment of PEMFCs has therefore become an important research topic. Here, we review recent advances in the understanding of the degradation mechanisms of Metal-N-C electrocatalysts, including the recently identified importance of combined oxygen and electrochemical potential. Results obtained in a liquid electrolyte and a PEMFC device are discussed, as well as insights gained from in situ and operando techniques. We also review the mitigation approaches that the scientific community has hitherto investigated to overcome the durability issues of Metal-N-C electrocatalysts.
Collapse
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
2
|
Li L, Wen Y, Han G, Kong F, Du L, Ma Y, Zuo P, Du C, Yin G. Architecting FeN x on High Graphitization Carbon for High-Performance Oxygen Reduction by Regulating d-Band Center. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300758. [PMID: 36866497 DOI: 10.1002/smll.202300758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Indexed: 06/02/2023]
Abstract
Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2 = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.
Collapse
Affiliation(s)
- Lingfeng Li
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yandi Wen
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guokang Han
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Lei Du
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| |
Collapse
|
3
|
Ning F, Qin J, Dan X, Pan S, Bai C, Shen M, Li Y, Fu X, Zhou S, Shen Y, Feng W, Zou Y, Cui Y, Song Y, Zhou X. Nanosized Proton Conductor Array with High Specific Surface Area Improves Fuel Cell Performance at Low Pt Loading. ACS NANO 2023; 17:9487-9500. [PMID: 37129062 DOI: 10.1021/acsnano.3c01690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of ordered catalyst layers, based on micro-/nanostructured arrays such as the ordered Nafion array, has demonstrated great potential in reducing catalyst loading and improving fuel cell performance. However, the size (diameter) of the basic unit of the most existing ordered Nafion arrays, such as Nafion pillar or cone, is typically limited to micron or submicron sizes. Such small sizes only provide a limited number of proton transfer channels and a small specific area for catalyst loading. In this work, the ordered Nafion array with a pillar diameter of only 40 nm (D40) was successfully prepared through optimization of the Nafion solvent, thermal annealing temperature, and stripping mode from the anode alumina oxide (AAO) template. The density of D40 is 2.7 × 1010 pillars/cm2, providing an abundance of proton transfer channels. Additionally, D40 has a specific area of up to 51.5 cm2/cm2, which offers a large area for catalyst loading. This, in turn, results in the interface between the catalyst layer and gas diffusion layer becoming closer. Consequently, the peak power densities of the fuel cells are 1.47 (array as anode) and 1.29 W/cm2 (array as cathode), which are 3.3 and 2.9 times of that without array, respectively. The catalyst loading is significantly reduced to 17.6 (array as anode) and 61.0 μg/cm2 (array as cathode). Thus, the nanosized Nafion array has been proven to have high fuel cell performance with low Pt catalyst loading. Moreover, this study also provides guidance for the design of a catalyst layer for water electrolysis and electrosynthesis.
Collapse
Affiliation(s)
- Fandi Ning
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Jiaqi Qin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiong Dan
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Saifei Pan
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Chuang Bai
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Min Shen
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yali Li
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xuwei Fu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shi Zhou
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yangbin Shen
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Dongyue Polymer Material Co., Ltd., Zibo 256401, China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Dongyue Polymer Material Co., Ltd., Zibo 256401, China
| | - Yi Cui
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Vacuum Interconnected Workstation, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yujiang Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaochun Zhou
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Li S, Li Z, Huang T, Xie H, Miao Z, Liang J, Pan R, Wang T, Han J, Li Q. Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N x /C Electrocatalysts for Oxygen Reduction in Acid. CHEMSUSCHEM 2023; 16:e202201795. [PMID: 36355035 DOI: 10.1002/cssc.202201795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Zhiqiang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianping Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huan Xie
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Ran Pan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
5
|
Xu T, Long J, Wang L, Chen K, Chen J, Gou X. Core-shell template derived porous 3D-Fe/Fe2O3@NSC composites as high performance catalysts for aqueous and solid-state rechargeable Zn-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Hao Z, Ma Y, Chen Y, Fu P, Wang P. Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193331. [PMID: 36234459 PMCID: PMC9565230 DOI: 10.3390/nano12193331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 05/02/2023]
Abstract
The oxygen reduction reaction (ORR) is one of the crucial energy conversion reactions in proton exchange membrane fuel cells (PEMFCs). Low price and remarkable catalyst performance are very important for the cathode ORR of PEMFCs. Among the various explored ORR catalysts, non-noble metals (transition metal: Fe, Co, Mn, etc.) and N co-doped C (M-N-C) ORR catalysts have drawn increasing attention due to the abundance of these resources and their low price. In this paper, the recent advances of single-atom catalysts (SACs) and double-atom catalysts (DACs) in the cathode ORR of PEMFCs is reviewed systematically, with emphasis on the synthesis methods and ORR performance of the catalysts. Finally, challenges and prospects are provided for further advancing non-noble metal catalysts in PEMFCs.
Collapse
Affiliation(s)
- Zhuo Hao
- School of Automobile, Chang’an University, Xi’an 710064, China
| | - Yangyang Ma
- College of Automotive Engineering, Jilin University, Changchun 130012, China
| | - Yisong Chen
- School of Automobile, Chang’an University, Xi’an 710064, China
- Correspondence: (Y.C.); (P.F.)
| | - Pei Fu
- School of Automobile, Chang’an University, Xi’an 710064, China
- Correspondence: (Y.C.); (P.F.)
| | - Pengyu Wang
- College of Automotive Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Meng X, Zheng Q, Sun Y, Wang Q, Wang L, Yuan P, Song X, Miao Y. Quick Release of Hydrogen Peroxide from Carbamide Peroxide Promotes Apoptosis of A549 Lung Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202200922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangrui Meng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai China
| | - Qian Wang
- Institute of Bismuth Science University of Shanghai for Science and Technology Shanghai China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai China
| | - Xiao Song
- Department of Cardio-Pulmonary Circulation Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai China
| | - Yuqing Miao
- Institute of Bismuth Science University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
8
|
Li H, Shi H, Dai Y, You H, Raj Babu Arulmani S, Zhang H, Feng C, Huang L, Zeng T, Yan J, Liu X. A Co-doped Oxygen Reduction Catalyst with FeCu promotes the Stability of Microbial Fuel Cells. J Colloid Interface Sci 2022; 628:652-662. [DOI: 10.1016/j.jcis.2022.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
|
9
|
Ma J, Liu B, Wang R, Sun Z, Zhang Y, Sun Y, Cai Z, Li Y, Zou J. Single-Cu-atoms anchored on 3D macro-porous carbon matrix as efficient catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Wang X, Zhang L, Xiao M, Ge J, Xing W, Liu C, Zhu J. Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dong X, Fang Z, Gu Y, Zhou X, Tian C. Two-dimensional porous Cu-CuO nanosheets: Integration of heterojunction and morphology engineering to achieve high-effective and stable reduction of the aromatic nitro-compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Li J, Zou S, Huang J, Wu X, Lu Y, Liu X, Song B, Dong D. Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Yang H, Xie A, Tang Y, Wang Z, Zhang J, Kong L, Song P, Sun Y, Yang X, Wan P. Fe-ZIF8 Coating Cu Foil Derived Carbon as A pH-universal Electrocatalyst for Efficient Oxygen Reduction Reaction. Chemistry 2021; 28:e202103275. [PMID: 34779065 DOI: 10.1002/chem.202103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/08/2022]
Abstract
It is a great challenge to fabricate highly efficient pH-universal electrocatalysts for oxygen reduction reaction (ORR). Herein, a facile strategy, which includes coating the Fe modified ZIF8 on Cu foil and in-situ pyrolysis to evaporate and dope Cu into the MOF derived carbon, is developed to fabricate Fe/Cu-N co-doped carbon material (Cu/Fe-NC). Profiting from the modulated electron distribution and textual properties, well-designed Cu/Fe-NC exhibits superior half-wave potential (E 1/2 ) of 0.923 V in alkaline, 0.757 V in neutral and comparable 0.801 V in acid electrolytes, respectively. Furthermore, the ultralow peroxides yield of ORR demonstrates the high selectivity of Cu/Fe-NC in full pH scale electrolytes. As expected, the self-made alkaline and neutral zinc-air batteries equipped with Cu/Fe-NC cathode display excellent discharge voltages, outstanding peak power densities and remarkable stability. This work opens a new way to fabricate highly efficient and pH-universal electrocatalysts for ORR through strategy of Fe/Cu-N co-doping, Cu foil evaporation and carbon defects capture.
Collapse
Affiliation(s)
- Haichao Yang
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| | - Ao Xie
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| | - Yang Tang
- Beijing University of Chemical Technology, Institute of Applied Electrochemistry & Faculty of Science, Beijing city Chaoyang District North Third Ring Road 15, 100029, Beijing, CHINA
| | - Zixiang Wang
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| | - Jinpeng Zhang
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| | - Lingpo Kong
- Mine Materials Branch of China Coal Research Institute, Mine Materials Branch, CHINA
| | - Peng Song
- Beijing University of Technology, Department of Environmental and Chemical Engineering, CHINA
| | - Yanzhi Sun
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| | - Xiaojin Yang
- Beijing University of Chemical Technology, College of Chemical and Engineering, CHINA
| | - Pingyu Wan
- Beijing University of Chemical Technology, College of Chemistry, CHINA
| |
Collapse
|