1
|
Wang J, Hu Y, Cao T, Duan Z, Zhao Z, Sun Y, Gu J, Wang X. Electro-oxidation of lincomycin and human pathogenic bacteria using carbon-supported lanthanide derivatives anodes: Accelerating wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125682. [PMID: 40378792 DOI: 10.1016/j.jenvman.2025.125682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/09/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Lanthanide metal-organic framework derivatives (Ln-MOFs) have emerged as effective conductive catalysts for enhancing the electrochemical performance of electrodes. This study presents a strategic approach to significantly improve the electrocatalytic activity of an anode in electrooxidation by integrating high-valence lanthanide metals into a carboxymethyl-functionalized carbon substrate. The focus is on investigating the degradation property of lincomycin (LIN) and the inactivation of human pathogenic bacteria (HPB, Escherichia coli (E. coli)). The results demonstrated that the Sm-MOF carboxymethyl-functionalized derived carbon (Sm-MOF/MCF) electrode exhibited exceptional electrochemical properties, including minimal charge transfer resistance (97.613 Ω/cm2), low corrosion current density (1.213 × 10-5 mA/cm2), high carrier density (2.071 × 1032), and an electrochemically active area of 229.600 cm2. As a promising anode, Sm-MOF/MCF achieved 99 % removal of LIN within 60 min and 95 % inactivation of E. coli within 20 min. Notably, density functional theory (DFT) calculations revealed that doping with Sm-MOF derivatives significantly reduced the activation energy barrier for hydroxyl radical (·OH) formation, thereby facilitating its generation and subsequent reaction with LIN and E. coli. In brief, this work offers innovative strategies for the development of electrodes aimed at effectively removing LIN and inactivating harmful HPB, highlighting new avenues for environmental remediation.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zichen Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Li M, Guo F, Xiao L, Wang Y, Zhang Y, Bo X, Liu T. Carboxyl induced ultrahigh defects and boron/nitrogen active centers in cobalt-embedded hierarchically porous carbon nanofibers: The stable oxygen reduction reaction catalysis in acid. J Colloid Interface Sci 2023; 637:291-304. [PMID: 36706725 DOI: 10.1016/j.jcis.2023.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Transition metal-nitrogen-carbon (MNC) type catalysts have been considered a promising alternative to noble metals for oxygen reduction reaction (ORR) electrocatalysis. Nevertheless, poor stabilities of MNC catalysts in acidic solutions limit their commercialization. In this study, we design and synthesize novel three-dimensional (3D) cobalt (Co) nanoparticles encapsulated in ultrahigh content of boron (B) and nitrogen (N) -doped hierarchically porous carbon nanofibers (denoted as Co@BN-PCNFs) by carbonizing the 3D acetic acid/cobalt nitrate/4-hydroxybenzeneboronic acid/polyvinylpyrrolidone precursor networks woven using electrospinning method under a nitrogen atmosphere. The optimal Co@BN-PCNFs-900 catalyst has abundant micro/mesopores and numerous topological defects and exhibits the largest surface area. Under the synergistic effect of oxygen-containing acetic acid molecules and the electrospinning technology, 5.87 at.% of B and 5.91 at.% of N atoms were doped into carbon nanofibers. Specifically, B/N electrocatalytic active centers (including BC3, pyridinic-N/CoNC, pyrrolic-N, and graphitic-N) of approximately 8.70 at.% were successfully introduced into the skeletons of Co@BN-PCNFs-900. In 0.1 M KOH, the ORR onset potential (Eonset) and half-wave potential (E1/2) of Co@BN-PCNFs-900 were ∼ 64 and ∼ 63 mV, respectively, more positive than those of 20 wt% Pt/C. Additionally, in 0.5 M H2SO4, the ORR Eonset and E1/2 values of Co@BN-PCNFs-900 were only ∼ 11 and ∼ 7 mV, respectively, more negative than those of 20 wt% Pt/C. As the 3D hierarchically porous architectures, topological carbon edges, BC3, and partial NC/CoNC are relatively stable, the Co@BN-PCNFs-900 exhibits excellent stability toward ORR catalysis in both acidic and basic media. These favorable properties of Co@BN-PCNFs-900 nanofibers make them the best non-noble metal-based carbonaceous electrocatalysts for ORR in acidic electrolytes.
Collapse
Affiliation(s)
- Mian Li
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Lan Xiao
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yibin Wang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Tingting Liu
- Electron Microscopy Center, School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
3
|
Zhang YP, Su ZX, Wei HH, Wang ZQ, Gong XQ. Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study. J Phys Chem Lett 2023; 14:1990-1998. [PMID: 36815311 DOI: 10.1021/acs.jpclett.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Decreasing the level of use of Pt in proton exchange membrane fuel cells is of great research interest both academically and industrially. In this work, we systematically studied the oxygen reduction reaction (ORR) following the four-electron association mechanism at various Pt-Bi surfaces with density functional theory calculations. The results showed that the introduction of Bi changes the potential-determining step of ORR. Moreover, the hydroxy adsorption free energy (GOH*) can be used as a descriptor of ORR activity, and 0.74 eV is the ideal GOH* for it to reach its maximum. Notably, we also found that the tensile strain introduced by Bi and electron transfer between Pt and Bi synergize to modulate the d-band of Pt to contract, shift downward, and break the 5d96s1 valence electron configuration of Pt, and accordingly, PtBi(100), with the lowest d-band center, gives the best ORR activity, which is even slightly higher than that of Pt(111).
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zi-Xiang Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - He-He Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
4
|
Zhang L, Liu Y, Wang T, Liu Z, Li W, Qiao ZA. Multi-Dimensional Molecular Self-Assembly Strategy for the Construction of Two-Dimensional Mesoporous Polydiaminopyridine and Carbon Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205693. [PMID: 36408773 DOI: 10.1002/smll.202205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) mesoporous polymers, combining the advantages of organic polymers, porous materials, and 2D materials, have received great attention in adsorption, catalysis, and energy storage. However, the synthesis of 2D mesoporous polymers is not only challenged by the complex 2D structure construction, but also by the low yield and difficulty in controlling the dynamics of the assembly during the generation of mesopores. Herein, a facile multi-dimensional molecular self-assembly strategy is reported for the preparation of 2D mesoporous polydiaminopyridines (MPDAPs), which features tunable pore sizes (17-35 nm) and abundant N content up to 18.0 at%. Benefitting from the abundant N sites, 2D nanostructure, and uniform-large mesopores, the 2D MPDAPs exhibit excellent catalytic performance for the Knoevenagel condensation reaction. After calcination under N2 atmosphere, the obtained 2D N-doped mesoporous carbon (NMCs) with large and uniform pore sizes, high surface areas, abundant N content (up to 23.1%), and a high ratio of basic N species (57.0% pyridinic N and 35.9% pyrrolic N) can show an excellent CO2 uptake density (11.7 µmol m-2 at 273 K), higher than previously reported porous materials.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhilin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
5
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
6
|
Zhang X, Yu P, Xing G, Xie Y, Zhang X, Zhang G, Sun F, Wang L. Iron Single Atoms-Assisted Cobalt Nitride Nanoparticles to Strengthen the Cycle Life of Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205228. [PMID: 36328702 DOI: 10.1002/smll.202205228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The development of nonprecious metal catalysts with both oxygen reduction and evolution reactions (ORR/OER) is very important for Zn-air batteries (ZABs). Herein, a Co5.47 N particles and Fe single atoms co-doped hollow carbon nanofiber self-supporting membrane (H-CoFe@NCNF) is synthesized by a coaxial electrospinning strategy combined with pyrolysis. X-ray absorption fine spectroscopy analyses confirm the state of the cobalt nitride and Fe single atoms. As a result, H-CoFe@NCNF exhibits a superior bifunctional performance of Eonset = 0.96 V for ORR, and Ej = 10 = 1.68 V for OER. Density functional theory calculations show that H-CoFe@NCNF has a moderate binding strength to oxygen due to the coexistence of nanoparticle and single atoms. Meanwhile, the Co site is more favorable to the OER, while the Fe site facilitates the ORR, and the proton and charge transfer between N and metal atoms further lower the reaction barriers. The liquid ZAB composed of H-CoFe@NCNF has a charge-discharge performance of ≈1100 h and a peak power density of 205 mW cm-2 . The quasi-solid-state ZAB assembled by the self-supporting membrane of H-CoFe@NCNF is proven to operate stably in any bending condition.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Peng Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Gengyu Xing
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Xinxin Zhang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Guangying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Fanfei Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
7
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
He Y, Xi Z, Xu C. Simply prepared electrocatalyst of CoFe alloy and nitrogen-doped carbon with multi-dimensional structure and high performance for rechargeable zinc-air battery. NANOTECHNOLOGY 2022; 33:475401. [PMID: 35914475 DOI: 10.1088/1361-6528/ac85c4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Simple and green preparation of highly-performed electrocatalysts for reaction both at cathode (oxygen reduction reaction (ORR)) and anode (oxygen evolution reaction (OER)) is crucial for boosting the application of meta-air battery. CoFe alloy and nitrogen doped carbon (CoFe-NC) material was prepared by a one-step carbonization procedure to construct a highly efficient electrocatalysis in this work. CoFe-NC displays a three-dimensional (3D) flower-like morphology composed of ordered stacked 2D nanosheets, which is entangled by 1D carbon nanotubes (CNTs). Its structure and electrocatalytic performance are compared with that of nitrogen doped carbon materials obtained from 2D zeolitic-imidazolate frameworks (ZIF) with no metal or single metal, as well as 3D ZIF with bimetal. Benefiting from the multi-dimensional structure of bimetal nanoparticles, 1D CNTs, 2D nanosheets, and 3D flowers, as well as the abundant active sites of Co/Fe-Nxand pyridine nitrogen, CoFe-NC displays a high half-wave potential of 0.896 V for ORR and low overpotential of 370 mV at 10 mA cm-2for OER. Furthermore, compared with the primary and rechargeable Zn-air batteries fabricated with commercial Pt/C-RuO2catalysts, the CoFe-NC catalysts assembled Zn-air batteries show a higher specific capacity (812.2 mAh g-1), open circuit potential (1.59 V), power density (183.4 mW cm-2), and stability. Hence, a facile and environmental-friendly strategy is provided for rational design and synthesis of bifunctional electrocatalysts for zinc-air batteries.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Zhiwei Xi
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| | - Chunli Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an 710119, People's Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
9
|
Zhou D, Xue X, Luan Q, Zhang L, Li B, Wang X, Dong W, Wang G, Hou C. A unique Janus PdZn-Co@C catalyst for enhanced photocatalytic syngas production from CO2 and H2O. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen L, Zhang Y, Jia J. Nitrogen-doped mesoporous carbon nanospheres loaded with cobalt nanoparticles for oxygen reduction and Zn-air batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Tang W, Teng K, Guo W, Gu F, Li B, Qi R, Liu R, Lin Y, Wu M, Chen Y. Defect-Engineered Co 3 O 4 @Nitrogen-Deficient Graphitic Carbon Nitride as an Efficient Bifunctional Electrocatalyst for High-Performance Metal-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202194. [PMID: 35665997 DOI: 10.1002/smll.202202194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The ability to craft high-efficiency and non-precious bifunctional oxygen catalysts opens an enticing avenue for the real-world implementation of metal-air batteries (MABs). Herein, Co3 O4 encapsulated within nitrogen defect-rich g-C3 N4 (denoted Co3 O4 @ND-CN) as a bifunctional oxygen catalyst for MABs is prepared by graphitizing the zeolitic imidazolate framework (ZIF)-67@ND-CN. Co3 O4 @ND-CN possesses superb bifunctional catalytic performance, which facilitates the construction of high-performance MABs. Concretely, the rechargeable zinc-air battery based on Co3 O4 @ND-CN shows a superior round-trip efficiency of ≈60% with long-term durability (over 340 cycles), exceeding the battery with the state-of-the-art noble metals. The corresponding lithium-oxygen battery using Co3 O4 @ND-CN exhibits an excellent maximum discharge/charge capacity (9838.8/9657.6 mAh g-1 ), an impressive discharge/charge overpotential (1.14 V/0.18 V), and outstanding cycling stability. Such compelling electrocatalytic processes and device performances of Co3 O4 @ND-CN originate from concurrent compositional (i.e., defect-engineering) and structural (i.e., wrinkled morphology with abundant porosity) elaboration as well as the well-defined synergy between Co3 O4 and ND-CN, which produce an advantageous surface electronic environment corroborated by theoretical modeling. By extension, a rich diversity of other metal oxides@ND-CN with adjustable defects, architecture, and enhanced activities may be rationally designed and crafted for both scientific research on catalytic properties and technological development in renewable energy conversion and storage systems.
Collapse
Affiliation(s)
- Wenhao Tang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Kewei Teng
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Wengai Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Fan Gu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Boya Li
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Ruiyu Qi
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Ruiping Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yuyin Lin
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Miaomiao Wu
- Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yihuang Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
13
|
Li Z, Zou J, Xi X, Fan P, Zhang Y, Peng Y, Banham D, Yang D, Dong A. Native Ligand Carbonization Renders Common Platinum Nanoparticles Highly Durable for Electrocatalytic Oxygen Reduction: Annealing Temperature Matters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202743. [PMID: 35426176 DOI: 10.1002/adma.202202743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Current protocols for synthesizing monodisperse platinum (Pt) nanoparticles typically involve the use of hydrocarbon molecules as surface-capping ligands. Using Pt nanoparticles as catalysts for the oxygen reduction reaction (ORR), however, these ligands must be removed to expose surface sites. Here, highly durable ORR catalysts are realized without ligand removal; instead, the native ligands are converted into ultrathin, conformal graphitic shells by simple thermal annealing. Strikingly, the annealing temperature is a critical factor dictating the ORR performance of Pt catalysts. Pt nanoparticles treated at 500 °C show a very poor ORR activity, whereas those annealed at 700 °C become highly active along with exceptional stability. In-depth characterization reveals that thermal treatment from 500 to 700 °C gradually opens up the porosity in carbon shells through graphitization. Importantly, such graphitic-shell-coated Pt catalysts exhibit a superior ORR stability, largely retaining the activity after 20 000 cycles in a membrane electrode assembly. Moreover, this ligand carbonization strategy can be extended to modify commercial Pt/C catalysts with substantially enhanced stability. This work demonstrates the feasibility of boosting the ORR performance of common Pt nanoparticles by harnessing the native surface ligands, offering a robust approach of designing highly durable catalysts for proton-exchange-membrane fuel cells.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jinxiang Zou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Pengshuo Fan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yi Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
| | - Ye Peng
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
- Guangdong TaiJi Power, Foshan, 528000, China
| | - Dustin Banham
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China
- Guangdong TaiJi Power, Foshan, 528000, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Dong X, Fang Z, Gu Y, Zhou X, Tian C. Two-dimensional porous Cu-CuO nanosheets: Integration of heterojunction and morphology engineering to achieve high-effective and stable reduction of the aromatic nitro-compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Wang X, Chang G, Liu C, Li R, Jin Y, Ding X, Liu X, Wang H, Wang T, Jiang J. Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hemi-covalent organic framework, P-Ni3(TAA)3, with the different conversion efficiency (P) of 34–72% for bis(diimine) nickel units has been obtained. The 40%-Ni3(TAA)3 exhibits the improved chemical stability and significantly catalytic property.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruidong Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolin Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Xu Q, Zhang J, Wang D, Li Y. Single-atom site catalysts supported on two-dimensional materials for energy applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zheng B, Zhou Y, Pan Z, Liu G, Lang L. Highly efficient and self-supported 3D carbon nanotube composite electrode for enhanced oxygen reduction reaction. RSC Adv 2021; 11:38856-38861. [PMID: 35493242 PMCID: PMC9044186 DOI: 10.1039/d1ra07973e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
A binder-free and self-supported 3D carbon nanotube composite electrode with NiFe nanoalloys, N doping and Fe/Ni-N x -C structures was fabricated by a facile method. The strong synergistic effects of multi-components and the unique structural merits of the optimized sample endowed it outstanding oxygen reduction reaction activity with an onset potential of 1.048 V vs. RHE in 0.1 M KOH solution.
Collapse
Affiliation(s)
- Bo Zheng
- Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing Xiaozhuang University Nanjing 211171 China
| | - Yue Zhou
- Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing Xiaozhuang University Nanjing 211171 China
| | - Zhaorui Pan
- Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing Xiaozhuang University Nanjing 211171 China
| | - Guangxiang Liu
- Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing Xiaozhuang University Nanjing 211171 China
| | - Leiming Lang
- Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing Xiaozhuang University Nanjing 211171 China
| |
Collapse
|
19
|
Hu Y, Zhang J, Shen T, Lu Y, Chen K, Tu Z, Lu S, Wang D. A Low-Temperature Carbon Encapsulation Strategy for Stable and Poisoning-Tolerant Electrocatalysts. SMALL METHODS 2021; 5:e2100937. [PMID: 34927969 DOI: 10.1002/smtd.202100937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Indexed: 06/14/2023]
Abstract
Carbon encapsulation is an effective strategy for enhancing the durability of Pt-based electrocatalysts for the oxygen reduction reaction (ORR). However, high-temperature treatment is not only energy-intensive but also unavoidably leads to possible aggregation. Herein, a low-temperature polymeric carbon encapsulation strategy (≈150 °C) is reported to encase Pt nanoparticles in thin and amorphous carbonaceous layers. Benefiting from the physical confinement effect and enhanced antioxidant property induced by the surface carbon species, significantly improved stabilities can be achieved for polymeric carbon species encapsulated Pt nanoparticles (Pt@C/C). Particularly, a better antipoisoning capability toward CO, SOx , and POx is observed in the case of Pt@C/C. To minimize the thickness of the catalyst layer and reduce the mass transfer resistance, the high mass loading Pt@C/C (40 wt%) is prepared and applied to high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). At 160 °C, a peak power density of 662 mW cm-2 is achieved with 40% Pt@C/C cathode in H2 -O2 HT-PEMFCs, which is superior to that with 40% Pt/C cathode. The facile strategy provides guidance for the synthesis of highly durable carbon encapsulated noble metal electrocatalysts toward ORR.
Collapse
Affiliation(s)
- Yezhou Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jujia Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ke Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengkai Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Yang W, Li J, Cui X, Yang C, Liu Y, Zeng X, Zhang Z, Zhang Q. Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ren Y, Wang H, Zhang T, Ma L, Ye P, Zhong Y, Hu Y. Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Chu X, Meng F, Deng T, Zhang W. Metal organic framework derived porous carbon materials excel as an excellent platform for high-performance packaged supercapacitors. NANOSCALE 2021; 13:5570-5593. [PMID: 33725084 DOI: 10.1039/d1nr00160d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Designing and synthesizing new materials with special physical and chemical properties are the key steps to assembling high performance supercapacitors. Metal organic framework (MOF) derived porous carbon materials have drawn great attention in supercapacitors because of their large specific surface area, high chemical/thermal stability and tunable pore structure. Thus, the recent development of porous carbon as an electrode material for supercapacitors is reviewed. The types, design and synthesis strategies of porous carbon are systematically summarized. This review will be divided into three main parts: (1) the design and synthesis of MOF precursors and templates for MOF-derived porous carbon materials; (2) the application of different types of MOF-derived carbon in supercapacitors; and (3) the design of typical structures of porous carbon composites for supercapacitors. Finally, the problems and challenges confronted when using porous carbon are assessed and elaborated, and some suggestions on future research directions are proposed.
Collapse
Affiliation(s)
- Xianyu Chu
- Key Laboratory of Automobile Materials Ministry of Education, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, China.
| | | | | | | |
Collapse
|