1
|
Tuci G, Moro M, Rossin A, Evangelisti C, Poggini L, Etzi M, Verlato E, Paolucci F, Liu Y, Valenti G, Giambastiani G. Swapping CO 2 electro-reduction active sites on a nickel-based hybrid formed on a "guilty" covalent triazine framework. NANOSCALE 2025; 17:8850-8860. [PMID: 40091802 DOI: 10.1039/d4nr05259e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A homogeneous and almost monodisperse Ni/CTFph composite of ultrasmall Ni NPs (∼2.2 nm) has been prepared by Metal Vapor Synthesis (MVS) and deposited on a highly porous and high specific surface area covalent triazine network. Metal doping was deliberately carried out on a metal-free system exhibiting superior CO2RR selectivity towards the challenging CO2-to-HCOOH electroreduction. Electrochemical studies aimed at shedding light on the CO2RR performance of the ultimate composite have allowed speculation on the synergistic or exclusive action of the two potentially active phases (N-doped C-network vs. Ni NPs). In contrast to the generally exclusive CO2-to-CO reduction mechanism described for the state-of-the-art Ni NP-based CO2RR electrocatalysts, Ni/CTFph has unveiled the unprecedented ability of Ni NPs to promote the alternative and more challenging 2e- CO2-to-HCOOH reduction pathway, even at moderately reducing potentials (-0.3 V vs. RHE).
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy.
| | - Miriam Moro
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy.
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy.
| | - Claudio Evangelisti
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR, Via G. Moruzzi, 1-56124 Pisa, Italy
| | - Lorenzo Poggini
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy.
- University of Florence, Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Etzi
- Center for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Torino, 10144, Italy
| | - Enrico Verlato
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE-CNR, 35127 Padova, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy.
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE-CNR, 35127 Padova, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, 116023 Dalian, China
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy.
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy.
- University of Florence, Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
2
|
Li J, Chen L, Qiao Y, Li L, Li X, Deng L, Duan X, Chen H, Gao Y. MOF-Derived N-Doped Carbon Nanotube-Confined Ni Nanoparticles for the Simultaneous Electrochemical Detection of Cu²⁺ and Hg²⁺ with High Sensitivity and Stability. Molecules 2025; 30:1078. [PMID: 40076303 PMCID: PMC11901796 DOI: 10.3390/molecules30051078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Heavy metal pollution has posed a serious threat to the ecological environment and human health. Thus, the development of accurate and effective methods for their detection is crucial. In this study, a novel electrochemical sensor was fabricated to detect Cu2+ and Hg2+, based on N-doped carbon nanotube-wrapped Ni nanoparticle (Ni@N-CNT) sensing material, which was derived from the pyrolysis of Ni2+ doped ZIF-8. For electrode material design, the packaging structure not only protected the encapsulated Ni nanoparticles from electrochemical corrosion in the acid electrolyte but also provided excellent electro-catalytic activity and electrical conductivity by controlling their size. Thanks to the overall performance of the Ni@N-CNT composite, the proposed sensor exhibited excellent analytical performance for Cu2+ and Hg2+ detection, with ultra-low detection limits of 33.3 ng⋅L-1 and 33.3 ng⋅L-1, respectively. The sensor also demonstrated good repeatability, reproducibility and selectivity. In addition, the method was successfully applied to the electrochemical analysis of Cu2+ and Hg2+ in actual Chinese cabbage samples with satisfactory recovery, confirming its practical applicability.
Collapse
Affiliation(s)
- Jiapeng Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.L.); (L.C.); (Y.Q.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| | - Lili Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.L.); (L.C.); (Y.Q.)
| | - Yiming Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.L.); (L.C.); (Y.Q.)
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| | - Xin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| | - Linbo Deng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.L.); (L.C.); (Y.Q.)
- Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, School of Chemistry and Chemical Engineering, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Institute of Applied Chemistry, Jinggangshan University, Ji’an 343009, China
| | - Hui Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.L.); (X.L.); (L.D.)
| |
Collapse
|
3
|
Li M, Wang J, Cong X, Sun Y, Liu Q, Miao Z, Li Z, Wang L. Confined Ni nanoparticles in N-doped carbon nanotubes for excellent pH-universal industrial-level electrocatalytic CO 2 reduction and Zn-CO 2 battery. J Colloid Interface Sci 2024; 657:738-747. [PMID: 38071822 DOI: 10.1016/j.jcis.2023.11.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Electrocatalytic reduction of CO2 (ECR) offers a promising approach to curbed carbon emissions and complete carbon cycles. However, the inevitable creation of carbonates and limited CO2 utilization efficiency in neutral or alkaline electrolytes result in low energy efficiency, carbon losses and its widespread commercial utilization. The advancement of CO2 reduction under acidic conditions offers a promising approach for their commercial utilization, but the inhibition of hydrogen evolution reaction and the corrosion of catalysts are still challenging. Herein, Ni nanoparticles (NPs) wrapped in N-doped carbon nanotubes (NixNC-a) are successfully prepared by a facile mixed-heating and freeze-drying method. Ni100NC-a achieves a high Faraday efficiency (FE) of near 100 % for CO under pH-universal conditions, coupled with a promising current density of CO (>100 mA cm-2). Especially in acidic conditions, Ni100NC-a exhibits an exceptional ECR performance with the high FECO of 97.4 % at -1.44 V and the turnover frequency (TOF) of 11 k h-1 at -1.74 V with a current density of 288.24 mA cm-2. This excellent performance is attributed to the synergistic effect of Ni NPs and N-doped carbon shells, which protects Ni NPs from etching, promotes CO2 adsorption and regulates local pH. Moreover, Ni100NC-a could drive the reversible Zn-CO2 battery with a high power-density of 4.68 mW cm-2 and a superior stability (98 h). This study presents a promising candidate for efficient pH-universal CO2 electroreduction and Zn-CO2 battery.
Collapse
Affiliation(s)
- Meiyin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yinggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
4
|
Huang X, Kong D, Ma Y, Luo B, Wang B, Zhi L. An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO 2 to ethanol. FUNDAMENTAL RESEARCH 2023; 3:786-795. [PMID: 38933297 PMCID: PMC11197807 DOI: 10.1016/j.fmre.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 10/19/2022] Open
Abstract
Electrochemically reducing CO2 to ethanol is attractive but suffers from poor selectivity. Tandem catalysis that integrates the activation of CO2 to an intermediate using one active site and the subsequent formation of hydrocarbons on the other site offers a promising approach, where the control of the intermediate transfer between different catalytic sites is challenging. We propose an internally self-feeding mechanism that relies on the orientation of the mass transfer in a hierarchical structure and demonstrate it using a one-dimensional (1D) tandem core-shell catalyst. Specifically, the carbon-coated Ni-core (Ni/C) catalyzes the transformation of CO2-to-CO, after which the CO intermediates are guided to diffuse to the carbon-coated Cu-shell (Cu/C) and experience the selective reduction to ethanol, realizing the orientated key intermediate transfer. Results show that the Faradaic efficiency for ethanol was 18.2% at -1 V vs. RHE (VRHE) for up to 100 h. The following mechanism study supports the hypothesis that the CO2 reduction on Ni/C generates CO, which is further reduced to ethanol on Cu/C sites. Density functional theory calculations suggest a combined effect of the availability of CO intermediate in Ni/C core and the dimerization of key *CO intermediates, as well as the subsequent proton-electron transfer process on the Cu/C shell.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
5
|
Zhao Y, Yuan Q, Sun K, Wang A, Xu R, Xu J, Wang Y, Fan M, Jiang J. Curvature Effect of Pyridinic N-Modified Carbon Atom Sites for Electrocatalyzing CO 2 Conversion to CO. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37593-37601. [PMID: 37494594 DOI: 10.1021/acsami.3c08853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Carbon material is considered a promising electrocatalyst for the CO2 reduction reaction (CO2RR); especially, N-doped carbon material shows high CO Faradic efficiency (FECO) when using pyridinic N species as the active site. However, in the past decade, more efforts were focused on the preparation of various carbon nanostructures containing abundant pyridinic N species and few researchers studied the electronic structure modulation of the pyridinic N site. The curvature of the carbon substrate is an easily controllable parameter for modulating the local electronic environment of catalytic sites. In this research, carbon nanotubes (CNTs) with different diameters are applied to modulate the electronic environment of pyridinic N by the curvature effect. The pyridinic N sites doped on CNTs with the average curvature of 0.04 show almost 100% FECO at the current density of 3 mA cm-2 at -0.6 V vs RHE and 91% FECO retention after 12 h test, which is superior to most of the carbon-based electrocatalysts. As demonstrated by density functional theory simulation, the pyridinic N site forms a strong local electric field around the nearby C active site and protrudes out of the curved CNT surface like a tip, which remarkably enriches the protons around the adsorbed CO2 molecule.
Collapse
Affiliation(s)
- Yuying Zhao
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kang Sun
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
| | - Ao Wang
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
| | - Ruting Xu
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
| | - Jing Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengmeng Fan
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zhao Y, Yuan Q, Fan M, Wang A, Sun K, Wang Z, Jiang J. Fabricating pyridinic N-B sites in porous carbon as efficient metal-free electrocatalyst in conversion CO2 into CH4. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Wang F, Zhang W, Wan H, Li C, An W, Sheng X, Liang X, Wang X, Ren Y, Zheng X, Lv D, Qin Y. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
|
10
|
Liang S, Huang L, Gao Y, Wang Q, Liu B. Electrochemical Reduction of CO 2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102886. [PMID: 34719862 PMCID: PMC8693035 DOI: 10.1002/advs.202102886] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/31/2021] [Indexed: 05/14/2023]
Abstract
Electrochemical CO2 reduction to value-added chemicals/fuels provides a promising way to mitigate CO2 emission and alleviate energy shortage. CO2 -to-CO conversion involves only two-electron/proton transfer and thus is kinetically fast. Among the various developed CO2 -to-CO reduction electrocatalysts, transition metal/N-doped carbon (M-N-C) catalysts are attractive due to their low cost and high activity. In this work, recent progress on the development of M-N-C catalysts for electrochemical CO2 -to-CO conversion is reviewed in detail. The regulation of the active sites in M-N-C catalysts and their related adjustable electrocatalytic CO2 reduction performance is discussed. A visual performance comparison of M-N-C catalysts for CO2 reduction reaction (CO2 RR) reported over the recent years is given, which suggests that Ni and Fe-N-C catalysts are the most promising candidates for large-scale reduction of CO2 to produce CO. Finally, outlooks and challenges are proposed for future research of CO2 -to-CO conversion.
Collapse
Affiliation(s)
- Shuyu Liang
- College of Environmental Science and EngineeringBeijing Forestry University35 Qinghua East Road, Haidian DistrictBeijing100083P. R. China
| | - Liang Huang
- College of Environmental Science and EngineeringBeijing Forestry University35 Qinghua East Road, Haidian DistrictBeijing100083P. R. China
| | - Yanshan Gao
- College of Environmental Science and EngineeringBeijing Forestry University35 Qinghua East Road, Haidian DistrictBeijing100083P. R. China
| | - Qiang Wang
- College of Environmental Science and EngineeringBeijing Forestry University35 Qinghua East Road, Haidian DistrictBeijing100083P. R. China
| | - Bin Liu
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
11
|
From CO2 to Value-Added Products: A Review about Carbon-Based Materials for Electro-Chemical CO2 Conversion. Catalysts 2021. [DOI: 10.3390/catal11030351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global warming and the dangerous climate change arising from the massive emission of CO2 from the burning of fossil fuels have motivated the search for alternative clean and sustainable energy sources. However, the industrial development and population necessities make the decoupling of economic growth from fossil fuels unimaginable and, consequently, the capture and conversion of CO2 to fuels seems to be, nowadays, one of the most promising and attractive solutions in a world with high energy demand. In this respect, the electrochemical CO2 conversion using renewable electricity provides a promising solution. However, faradaic efficiency of common electro-catalysts is low, and therefore, the design of highly selective, energy-efficient, and cost-effective electrocatalysts is critical. Carbon-based materials present some advantages such as relatively low cost and renewability, excellent electrical conductivity, and tunable textural and chemical surface, which show them as competitive materials for the electro-reduction of CO2. In this review, an overview of the recent progress of carbon-based electro-catalysts in the conversion of CO2 to valuable products is presented, focusing on the role of the different carbon properties, which provides a useful understanding for the materials design progress in this field. Development opportunities and challenges in the field are also summarized.
Collapse
|
12
|
Tang S, Zhao M, Yuan D, Li X, Zhang X, Wang Z, Jiao T, Wang K. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117690] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|