1
|
Wang HY, Zhao SX, Li JX, Zhang YQ. Silk Fibroin Improves the Biological Properties of Egg White-Based Bioink for the Bioprinting of Tissue Engineering Materials. ACS OMEGA 2023; 8:46685-46696. [PMID: 38107927 PMCID: PMC10720283 DOI: 10.1021/acsomega.3c05810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Egg white (EW) is a common nutritious food with excellent heat gelation and biocompatibility, but its application in biomaterials is considerably limited. Silk fibroin (SF) is a protein-based fiber with both excellent mechanical properties and biocompatibility, and its application in biomaterials has attracted much attention. Here, the EW/SF composite scaffold was first synthesized with GMA-modified EW/SF composite bioink (G-EW/SF). When homogenized EW and SF were individually grafted with glycidyl methacrylate (GMA), the grafted EW (G-EW) and SF (G-SF) were mixed in different proportions and then added to I2959. The resulting G-EW/SF composite bioink could be bioprinted into various EW/SF composite scaffolds. Among them, the compressive modulus of EW/SF (50%) composite scaffolds incorporating 50% G-SF was significantly improved. It had a three-dimensional (3D) polypore structure with an average pore size of 61 μm and was mainly composed of β-sheet structures. Compared with the EW scaffold alone, the thermal decomposition temperature of the EW/SF scaffold was 10 °C higher, and the residual rate after 9 days of enzymatic hydrolysis had increased by about 18%. The scaffold prolonged the sustained release of insulin and promoted the adhesion, growth, and proliferation of the L-929 cells. Therefore, the EW/SF composite scaffolds with good cell proliferation ability and certain mechanical properties can be used in different applications including cells, drugs, and tissues. These results provide new prospects for the application of the EW protein to medical tissue engineering materials.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Stomatology
Department, The People’s Hospital
of Suzhou New District, Suzhou 215000, P. R. China
| | - Shu-Xiang Zhao
- School
of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215006, P. R. China
| | - Ji-Xin Li
- School
of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215006, P. R. China
| | - Yu-Qing Zhang
- School
of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
2
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
3
|
Li H, Yao J, Guo Y, Huo J, Zhang H, Zhang Z, Zhao J, Zhang C. Preparation of Conotoxin-Encapsulated Chitosan Nanoparticles and Evaluation of Their Skin Permeability. AAPS PharmSciTech 2023; 24:53. [PMID: 36707459 DOI: 10.1208/s12249-023-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
μ-Conotoxin CnIIIC (conotoxin, CTX)-loaded chitosan nanoparticles (CTX-NPs) were prepared using the ionic cross-linking method. The CTX-NPs were spherical and well with a polydispersity index of 0.292 ± 0.039, drug loading efficiency of 25.9 ± 1.2%, and encapsulation efficiency of 95.6 ± 1.3%. In vitro release studies showed that the release behavior of CTX-NPs in a pH 5.0 acetate buffer followed zero-order kinetics. In vitro transdermal experiments using Franz diffusion cells mounted with mouse abdominal skin demonstrated that the cumulative intradermal deposition amount of CTX per unit area in 8 h (D8) and permeability coefficient (Pf) of CTX loaded on CTX-NPs were 2.30- and 7.71-times that of the CTX solution. In vivo transdermal experiments in mice showed that the amount of CTX deposited in the skin after 8 h of CTX saline administration was significantly lower than that of CTX deposited in the skin after administration of CTX-NPs. In vitro fluorescence labeling transdermal studies through Franz diffusion cells mounted with mouse abdominal skin indicated that CTX-NPs aggregated at hair follicles. Skin irritation tests in mice indicated that the irritation due to CTX-NPs was negligible. The cytotoxicity experiment showed that the viability of Balb/c 3T3 cells with CTX-NPs containing 230 μg/mL (0.08 μM) CTX was greater than 75%. CTX-NPs increase intradermal deposition of CTX by accumulating in hair follicles, which has positive implications for transdermal penetration of CTX.
Collapse
Affiliation(s)
- Haigang Li
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - JiPeng Yao
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Yong Guo
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - JingJing Huo
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Haijuan Zhang
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Zengtao Zhang
- Shandong Renrui Biotechnology Inc., RiZhao, Shandong, People's Republic of China
| | - Jinlong Zhao
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, 276000, Shandong, People's Republic of China.
| | - Chun Zhang
- College of Medicine, Linyi University, Linyi, 276000, Shandong, People's Republic of China. .,Shandong Renrui Biotechnology Inc., RiZhao, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Peng S, Zhang X, Huang H, Cheng B, Xiong Z, Du T, Wu J, Huang H. Glutathione-sensitive nanoparticles enhance the combined therapeutic effect of checkpoint kinase 1 inhibitor and cisplatin in prostate cancer. APL Bioeng 2022; 6:046106. [DOI: 10.1063/5.0126095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignant tumor among males. Traditional treatments for PCa, which include surgery and endocrine therapy, have shown limited success, and more effective therapies are needed. Cisplatin (DDP) is an approved chemotherapeutic drug that causes DNA damage in cancer, whereas AZD7762, an inhibitor of CHK1, can significantly inhibit DNA repair. The effective therapeutic combination of cisplatin and the DNA damage response inhibitor AZD7762 has been considered to be a potential solution to the resistance to cisplatin and the adverse reactions that occur in many cancers. However, the co-transmission of cisplatin and AZD7762 and the unsatisfactory tumor-targeting efficacy of this therapy remain problems to be solved. Here, we confirmed the combined therapeutic efficacy of cisplatin and AZD7762 in PCa. Furthermore, we show that the glutathione-targeted Cys8E nanoparticles we synthesized, which have high drug-loading capacity, remarkable stability, and satisfactory release efficiency, enhanced the therapeutic efficacy of this treatment and reduced the required dosages of these drugs both in vitro and in vivo. Overall, we propose combination therapy of cisplatin and AZD7762 for PCa and facilitate it using Cys8E nanoparticles, which allow for better drug loading release, higher release efficiency, and more accurate tumor-targeting efficacy.
Collapse
Affiliation(s)
- Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou 510220, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinyu Zhang
- Department of Drug Clinical Trial Institution, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hao Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou 510220, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou 510220, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhi Xiong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou 510220, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tao Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou 510220, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| |
Collapse
|
5
|
Mahdipour E, Mequanint K. Films, Gels and Electrospun Fibers from Serum Albumin Globular Protein for Medical Device Coating, Biomolecule Delivery and Regenerative Engineering. Pharmaceutics 2022; 14:2306. [PMID: 36365125 PMCID: PMC9698923 DOI: 10.3390/pharmaceutics14112306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 09/18/2023] Open
Abstract
Albumin is a natural biomaterial that is abundantly available in blood and body fluids. It is clinically used as a plasma expander, thereby increasing the plasma thiol concentration due to its cysteine residues. Albumin is a regulator of intervascular oncotic pressure, serves as an anti-inflammatory modulator, and it has a buffering role due to its histidine imidazole residues. Because of its unique biological and physical properties, albumin has also emerged as a suitable biomaterial for coating implantable devices, for cell and drug delivery, and as a scaffold for tissue engineering and regenerative medicine. As a biomaterial, albumin can be used as surface-modifying film or processed either as cross-linked protein gels or as electrospun fibers. Herein we have discussed how albumin protein can be utilized in regenerative medicine as a hydrogel and as a fibrous mat for a diverse role in successfully delivering drugs, genes, and cells to targeted tissues and organs. The review of prior studies indicated that albumin is a tunable biomaterial from which different types of scaffolds with mechanical properties adjustable for various biomedical applications can be fabricated. Based on the progress made to date, we concluded that albumin-based device coatings, delivery of drugs, genes, and cells are promising strategies in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Elahe Mahdipour
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, University Ave., Mashhad 9177948564, Iran
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
6
|
He H, Du L, Xue H, Wu J, Shuai X. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy. Acta Biomater 2022; 149:297-306. [PMID: 35811069 DOI: 10.1016/j.actbio.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023]
Abstract
Clinical photodynamic therapy (PDT) only has a limited cancer therapeutic effect and typically leads to a more hypoxic milieu owing to the hypoxic conditions of the solid tumor microenvironment that limit the singlet oxygen (1O2), generation. To address this issue, the PDT, in combination with hypoxia-activated prodrugs, has recently been investigated as a possible clinical treatment modality for cancer therapy. By cross-linking the photosensitizer tetra(4-hydroxyphenyl)porphine (THPP) and a 1O2-cleavable thioketal (TK) linker, a multifunctional nanoscale covalent organic framework (COF) platform with a high porphyrin loading capacity was synthesized, which significantly improve the reactive oxygen species (ROS) generation efficiency and contributes to PDT. As-synthesized THPPTK-PEG nanoparticles (NPs) possess a high THPP photosensitizer content and mesoporous structure for further loading of the hypoxia-responsive prodrug banoxantrone (AQ4N) into the COF with a high-loading content. The nano-carriers surfaces are coated with a thick PEG coating to promote their dispersibility in physiological surroundings and therapeutic performance. When exposed to 660 nm radiation, such a nanoplatform can efficiently create cytotoxic 1O2 for PDT. Similarly, oxygen intake may exacerbate the hypoxic environment of the tumor, inducing the activation of AQ4N to achieve hypoxia-activated cascade chemotherapy and increased treatment efficacy. This study provides a new nanoplatform for photodynamic-chemical synergistic therapy and offers critical new insights for designing and developing a multifunctional supramolecular drug delivery system. STATEMENT OF SIGNIFICANCE: Here, we designed a laser-activated hypoxia-responsive nanoscale COF nanoplatform for hypoxia-activated cascade chemotherapy and PDT. When exposed to laser light, thus this nanoplatform can efficiently create cytotoxic 1O2 for PDT while consuming oxygen at the tumor location. However, increased oxygen consumption can exacerbate the tumor's hypoxic environment, causing AQ4N to become active, allowing for programmed hypoxia-triggered cascade chemotherapy and improved therapeutic efficacy. In addition, this innovative nanoscale COF nanoplatform allows for laser-controlled drug delivery in specific areas, which dramatically improves tumor inhibition. This research suggests a method for attaining ultrasensitive drug release and effective cascade therapy for cancer treatments.
Collapse
Affiliation(s)
- Haozhe He
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China; Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
7
|
Liu R, Guo Y, Lyu Y, Rao Q, Wang Y, Zhu J, Chen L, Zhang Q, Hou Y, Ye Z, Lu J. Myriophyllum spicatum Leaves: Aerophily for Gas Collection and Transportation in Water. ACS APPLIED BIO MATERIALS 2022; 5:3469-3475. [PMID: 35727224 DOI: 10.1021/acsabm.2c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique living environment of aquatic plants makes them produce many fantastic properties different from land ones. For instance, the leaves of Myriophyllum spicatum show excellent hydrophobicity and aerophily characteristics. In this paper, the abundant morphological structure, composition, and aerophily properties of Myriophyllum spicatum leaves are revealed. The contact angle of the leaf surface can reach 122° in air, exhibiting wonderful gas collection ability under water. The results showed that the aerophily of the leaves is attributed to the multistage micro-nanostructure and waxy layer on the surface. The gas transportation toward the tips of leaves is based on the void gradient formed by the nanoscale morphology at different growth stages and the buoyancy as well. These features provide bionic experience for gas collection, bubble transportation, and liquid resistance reduction in water environments.
Collapse
Affiliation(s)
- Rumin Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yichuan Guo
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Lyu
- Chongde Middle School, Hangzhou No. 15 Middle School Education Group, Hangzhou 310027, China
| | - Qingqing Rao
- College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Yuan Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Juan Zhu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lingxiang Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Liu Y, Zhu M, Meng M, Wang Q, Wang Y, Lei Y, Zhang Y, Weng L, Chen X. A dual-responsive hyaluronic acid nanocomposite hydrogel drug delivery system for overcoming multiple drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
|
10
|
Zhu J, Chen C, Dong J, Cheng S, Li G, Wang C, Ouyang D, Leung CH, Lin L. Artificial intelligence-aided discovery of prolyl hydroxylase 2 inhibitors to stabilize hypoxia inducible factor-1α and promote angiogenesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
12
|
Fang Z, Zhang X, Huang H, Wu J. Exosome based miRNA delivery strategy for disease treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Huang K, Huang J, Zhao J, Gu Z, Wu J. Natural lotus root-based scaffolds for bone regeneration. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Li J, Wang Z, Han H, Xu Z, Li S, Zhu Y, Chen Y, Ge L, Zhang Y. Short and simple peptide-based pH-sensitive hydrogel for antitumor drug delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Integrating of lipophilic platinum(IV) prodrug into liposomes for cancer therapy on patient-derived xenograft model. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Bioactive gelatin cryogels with BMP‐2 biomimetic peptide and VEGF: A potential scaffold for synergistically induced osteogenesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Zhu J, Ouyang A, Shen Z, Pan Z, Banerjee S, Zhang Q, Chen Y, Zhang P. Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Chen R, Ouyang P, Su L, Xu X, Lian P, Li Y, Gao Q, Zhang Y, Nie S, Luo F, Xu R, Zhang X, Li X, Cao Y, Gao P, Kang J, Wu J, Li L. Nanoparticles targeting at methylases with high correlation to N6-methyladenosine-related lncRNA signatures as potential therapy of kidney clear cell carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhao J, Zhu Y, Li Z, Liang J, Zhang Y, Zhou S, Zhang Y, Fan Z, Shen Y, Liu Y, Zhang F, Shen S, Xu G, Wang L, Lv Y, Zhang S, Zou X. Pirfenidone-loaded exosomes derived from pancreatic ductal adenocarcinoma cells alleviate fibrosis of premetastatic niches to inhibit liver metastasis. Biomater Sci 2022; 10:6614-6626. [DOI: 10.1039/d2bm00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pirfenidone delivery systems based on pancreatic cancer cell exosomes precisely reach HSCs and alleviate fibrotic microenvironments, thus inhibiting tumour metastasis.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, China
| | - Jiawei Liang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Yifeng Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| |
Collapse
|
20
|
Zhang Y, Li T, Hu Y, Chen J, He Y, Gao X, Zhang Y. Co-delivery of doxorubicin and curcumin via cRGD-peptide modified PEG-PLA self-assembly nanomicelles for lung cancer therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Yuan Q, Wang L, Huang J, Zhao W, Wu J. In vivo metabolizable branched poly(ester amide) based on inositol and amino acids as a drug nanocarrier for cancer therapy. Biomater Sci 2021; 9:6555-6567. [PMID: 34582536 DOI: 10.1039/d1bm00852h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acid-based poly(ester amide) (PEA) has been utilized for various biomedical applications due to its tunable mechanical properties, good biocompatibility, and biodegradability. However, bioactive components have rarely been incorporated into the PEA structure, and there has been no systematic investigation of amino acid-based PEAs with branched structures. Herein, an in vivo metabolizable branched poly(ester amide) (BPEA) was synthesized from inositol (a natural growth factor) and amino acids for drug delivery in cancer therapy. The bioactive components, inositol, arginine, and phenylalanine, could improve the biocompatibility of the BPEA nanocarrier, and convert into other valuable biomolecules (phosphatidylinositol for cell signaling, functional protein, or other amino acids including ornithine, citrulline, and tyrosine) after accomplishing drug delivery and biodegradation. Paclitaxel (PTX) was encapsulated into BPEA nanocarriers to formulate drug-loaded BPEA nanoparticles (BPEA@PTX NPs). In vitro results indicated that BPEA@PTX NPs had a sub 100 nm size and could effectively inhibit the growth and migration of cancer cells. In vivo experiments further demonstrated significant suppression of tumor size compared with that with free PTX. Both in vitro and in vivo results confirmed the superior biosafety of BPEA, indicating that BPEA exhibits excellent biocompatibility and considerable potential as a drug carrier.
Collapse
Affiliation(s)
- Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| | - Li Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR. China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| |
Collapse
|
22
|
Xian C, Chen H, Xiong F, Fang Y, Huang H, Wu J. Platinum-based chemotherapy via nanocarriers and co-delivery of multiple drugs. Biomater Sci 2021; 9:6023-6036. [PMID: 34323260 DOI: 10.1039/d1bm00879j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs can inhibit the growth of cancer cells by disrupting DNA replication, which makes them widely applicable in clinics for treating tumors and cancers. However, owing to the intrinsic or acquired drug resistance and severe side effects caused in the treatment, their successful clinical applications have been limited. Various strategies have been used to address these challenges. Nanocarriers have been used for platinum drug delivery because they can be effectively deposited in tumor tissues to reduce the damage to normal organs for an enhanced permeability and retention (EPR) effect. Furthermore, for synergizing the function of platinum-based drugs with different mechanisms to decrease the toxicities, multicomponent chemotherapy has become an imperative strategy in clinical cancer treatments. This review aims to introduce the mechanisms of action and limitations of platinum-based drugs in clinics, followed by providing the current advancement of nanocarriers including lipids, polymers, dendrimers, micelles and albumin for platinum drug delivery in cancer treatments. In addition, multicomponent chemotherapy based on platinum drugs is introduced in detail. Finally, the prospects of multicomponent chemotherapy for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Haolin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Fei Xiong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, China
| |
Collapse
|
23
|
Wang H, Xu Z, Li Q, Wu J. Application of metal-based biomaterials in wound repair. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|