1
|
Song D, Zheng D, Li Z, Wang C, Li J, Zhang M. Research Advances in Wood Composites in Applications of Industrial Wastewater Purification and Solar-Driven Seawater Desalination. Polymers (Basel) 2023; 15:4712. [PMID: 38139963 PMCID: PMC10747247 DOI: 10.3390/polym15244712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the ecosystem has been seriously affected by sewage discharge and oil spill accidents. A series of issues (such as the continuous pollution of the ecological environment and the imminent exhaustion of freshwater resources) are becoming more and more unmanageable, resulting in a crisis of water quality and quantity. Therefore, studies on industrial wastewater purification and solar-driven seawater desalination based on wood composites have been widely considered as an important development direction. This paper comprehensively analyzes and summarizes the applications of wood composites in the fields of solar-driven seawater desalination and polluted water purification. In particular, the present situation of industrial wastewater containing heavy metal ions, microorganisms, aromatic dyes and oil stains and related problems of solar-driven seawater desalination are comprehensively analyzed and summarized. Generally, functional nanomaterials are loaded into the wood cell wall, from which lignin and hemicellulose are selectively removed. Alternatively, functional groups are modified on the basis of the molecular structure of the wood microchannels. Due to its three-dimensional (3D) pore structure and low thermal conductivity, wood is an ideal substrate material for industrial wastewater purification and solar-driven seawater desalination. Based on the study of objective conditions such as the preparation process, modification method and selection of photothermal conversion materials, the performances of the wood composites in filtration, adsorption and seawater desalination are analyzed in detail. In addition, this work points out the problems and possible solutions in applying wood composites to industrial wastewater purification and solar-driven seawater desalination.
Collapse
Affiliation(s)
- Dongsheng Song
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Dingqiang Zheng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Zhenghui Li
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, School of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (C.W.); (J.L.)
| | - Jian Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, School of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (C.W.); (J.L.)
| | - Ming Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| |
Collapse
|
2
|
Mallakpour S, Azadi E, Hussain CM. Emerging membrane technologies and disinfection methods for efficient removal of waterborne pathogens during the COVID-19 pandemic and post-pandemic. NEW J CHEM 2023; 47:17-40. [DOI: 10.1039/d2nj04017d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We summarize the use of diverse materials like metals/metal oxides in the preparation of filtration systems for water treatment.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Ni H, Khan A, Yang Z, Gong Y, Ali G, Liu P, Chen F, Li X. Wood carbon electrode in microbial fuel cell enhances chromium reduction and bioelectricity generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13709-13719. [PMID: 34595714 DOI: 10.1007/s11356-021-16652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is a recommended treatment to remediate hexavalent chromium (Cr(VI)) in wastewater. In this study, a wood carbon (WC) electrode was introduced in MFC to enhance the Cr(VI) removal efficiency. WC electrode in MFC completely removed Cr(VI) as compared to the carbon cloth (31.12%) and carbon felt (34.83) within 48 h of operation at 20 mg L-1 of Cr(VI) concentration. The maximum power density of WC electrode was 62.59 mW m-2 higher than 0.115 and 3.154 mW m-2 of carbon cloth and felt respectively. The specific surface area of WC increased to 158.47 m-2 g-1 after high-temperature carbonization, and electrochemical tests indicate it has higher electrocatalytic ability. Therefore, WC might be a good electrode material to effectively remove Cr(VI) and generate bioelectricity simultaneously.
Collapse
Affiliation(s)
- Hongyuhang Ni
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Zi Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yuxin Gong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Gohar Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Fengjuan Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
4
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|