1
|
Yuan M, Ma F, Jiang Z, Chen L, Chai Z, Wang S. Monitoring UV radiation dosage based on a deuterated luminescent hydrogen-organic framework. Chem Commun (Camb) 2025. [PMID: 40390644 DOI: 10.1039/d5cc00036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Here, we report the enhancement of ultraviolet (UV) detection capabilities through luminescent hydrogen-bonded organic frameworks (HOFs), with a particular focus on the amelioration brought by hydrogen isotope effects. An in situ deuterated HOF (DHOF) is proposed, which demonstrates exceptional UV detection sensitivity through luminescence quenching with a significantly lower limit of detection (LOD) of 1.02 × 10-7 J than that of the hydrogenated HOF (HHOF), showcasing superior UV detection performance compared to current discoloration methods and other HOF implementations.
Collapse
Affiliation(s)
- Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zhen Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Ke Z, Zhuang W, Yu J, Liu Q, Rao X. Application of pyrene-based HOFs in ethyl cellulose-based food packaging films. Int J Biol Macromol 2025; 306:141383. [PMID: 39988144 DOI: 10.1016/j.ijbiomac.2025.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
This study investigates the application of pyrene-based HOFs in ethyl cellulose (EC)-based food packaging films. As the environmental impact of traditional plastics becomes increasingly significant, the development of environmentally friendly food packaging materials is urgent. The study synthesized two types of HOFs, HOF-PyTTA and PFC-2, which were fabricated into EC-HOFs composite films using a solution casting method. These composite films not only demonstrate excellent biocompatibility and hemocompatibility but also exhibit significantly enhanced UV shielding effects and antioxidant properties. In particular, EC-HOF-PyTTA-1 % film shows the best UV shielding effect (70.3 %) and antioxidant performance (31.8 %), and it also possesses a fluorescence angle-dependent color change function. The study indicates that the introduction of HOFs significantly improves the mechanical properties and thermal stability of EC films, providing new insights for the green design of food packaging materials.
Collapse
Affiliation(s)
- Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Weihui Zhuang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinxuan Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Qinyu Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
3
|
Li L, Xiang F, Li Y, Yang Y, Yuan Z, Chen Y, Yuan F, He L, Xiang S, Chen B, Zhang Z. Optimizing Propylene/Propane Sieving Separation through Gate-Pressure Control within a Flexible Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202419047. [PMID: 39541150 DOI: 10.1002/anie.202419047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
The separation of propylene (C3H6) and propane (C3H8) is of great significance in the chemical industry, which poses a challenge due to their almost identical kinetic diameters and similar physical properties. In this work, we synthesized an ultramicroporous flexible hydrogen-bonded organic framework (named HOF-FJU-106) by using molecule 2,3,6,7-tetra (4-cyanophenyl) tetrathiafulvalene (TTF-4CN). The formation of the dimer causes the TTF-4CN molecular to bend and weaken π-stacked interactions, coupled with the flexibility of C≡N ⋯ ${\cdots }$ H-C hydrogen bonds, which leads to reversible conversion between open and closed frameworks through the mutual slip of adjacent layers/columns under activation and stimulation of gas molecules. Through gas adsorption isotherms and adsorption enthalpy, HOF-FJU-106a exhibited adaptive adsorption and stronger binding affinity for C3H6, and presented a recorded gas uptake ratio of C3H6/C3H8 (23.77) among presentative HOF materials at room temperature to date. Importantly, the flexible HOF-FJU-106a shows an interesting phenomenon about the reversible gate pressure control under variable temperature, which realized the gas adsorption and separation performance enhancement for the binary C3H6/C3H8 mixtures. This strategy through designing HOFs with thermoregulatory gating effect is a powerful way to maximize the performance of materials.
Collapse
Affiliation(s)
- Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Yanting Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Furong Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| |
Collapse
|
4
|
Hai N, Yi H, Bai Y, Zhang L, Chi H, Yan J, Zhao L, Cai S. HOF-derived Step-Scheme FJU-200@CdSe heterojunction: A photoelectrochemical sensing platform for sensitive detection of EGFR. Biosens Bioelectron 2025; 267:116862. [PMID: 39461098 DOI: 10.1016/j.bios.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Here, a photoelectrochemical (PEC) immunosensor based on the FJU-200@CdSe heterostructure was developed for epidermal growth factor receptor (EGFR) detection. This is the first application of FJU-200 in PEC. After modification using CdSe quantum dots (QDs), FJU-200 and CdSe QDs formed an S-scheme heterostructure due to the interleaved energy band structure and the difference in Fermi energy (Ef) levels, which generated an efficient and stable PEC signal. When EGFR bound specifically to the antibody, a large spatial site resistance was generated, which hindered the electron transfer at the interface and the PEC signal was quenched. The proposed PEC sensing platform exhibited excellent detection performance for EGFR, with a good linear relationship with the photocurrent change value (ΔI) in the detection range of 10 fg/mL-100 ng/mL, and the detection limit was as low as 1.08 fg/mL. This work illustrates the potential electron transfer pathway between FJU-200 and CdSe QDs and creatively applies to the construction of PEC immunosensors, providing a new option for the detection of EGFR as well as other substances to be tested.
Collapse
Affiliation(s)
- Nan Hai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Han Yi
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yining Bai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Lingyun Zhang
- Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Haonan Chi
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Jiajing Yan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Shuang Cai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
5
|
Wang L, Deng J, Bai S, Wu Y, Zhu W. Enhanced Photocatalytic Degradation Performance by Micropore-Confined Charge Transfer in Hydrogen-Bonded Organic Framework-Like Cocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406352. [PMID: 39380386 DOI: 10.1002/smll.202406352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Carrier utilization in organic photocatalytic materials is unsatisfactory due to the large exciton binding energy and short exciton diffusion length. Both donor-acceptor (D-A) strategies and porous designs are promising approaches to improve carrier utilization in photocatalysts. However, a more efficient way is to shorten the distance of exciton migration to the catalyst surface by the charge transfer (CT) process. Herein, hydrogen-bonded organic framework-like cocrystal (NDI-Cor HOF-cocrystal) is prepared with novel structures serving as a proof of concept for the approach, using N, N'-bis (5-isophthalate) naphthalimide (NDI-COOH) as the porous framework and acceptor, and Coronene (Cor) as the donor unit. CT and porous engineering are integrated through cocrystal strategy. Under light irradiation, photogenerated excitons transfer and dissociate from the inner surface of the micropores on a hundred-picosecond time scale, where efficient radical transformation and further redox reactions with adsorbed phenol molecules occur. NDI-Cor HOF-cocrystal photocatalytic degradation of phenol is 15 times higher than that of original HOFs, and achieves near 90% deep mineralization of phenol. Significantly, this work has designed novel HOF-cocrystal and also provides new modification strategies for high performance organic photocatalysts.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jingheng Deng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxin Wu
- College of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Ji Z, Li Q, Zhou Y, Krishna R, Hong M, Wu M. Synergistic C 2H 2 Binding Sites in Hydrogen-Bonded Supramolecular Framework for One-Step C 2H 4 Purification from Ternary C2 Mixture. Angew Chem Int Ed Engl 2024; 63:e202411175. [PMID: 39102295 DOI: 10.1002/anie.202411175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Purification of C2H4 from the ternary C2 hydrocarbon mixture in one step is of critical significance but still extremely challenging according to its intermediate physical properties between C2H6 and C2H2. Hydrogen-bonded organic frameworks (HOFs) stabilized by supramolecular interactions are emerging as a new kind of adsorbents that facilitate green separation. However, it remains a problem to efficiently realize the one-step C2H4 purification from C2H6/C2H4/C2H2 mixture because of the low C2H2/C2H4 selectivity. We herein report a robust microporous HOF (termed as HOF-TDCPB) with dense O atoms and aromatic rings distributed on the pore surface which provide C2H6 and C2H2 preferred environment simultaneously. Dynamic breakthrough experiments indicate that HOF-TDCPB can not only obtain high-purity C2H4 from binary C2 mixture, but also firstly realize one-step C2H4 purification from ternary C2H6/C2H4/C2H2 mixture, with the C2H4 productivity of 3.2 L/kg (>99.999 %) for one breakthrough cycle. Furthermore, HOF-TDCPB displays outstanding stability in air, organic solvents and water, which endow it excellent cycle performance even under high-humidity conditions. Theoretical calculations indicate that multiple O sites on pore channels can create synergistic binding sites for C2H2, thus affording overall stronger multipoint interactions.
Collapse
Affiliation(s)
- Zhenyu Ji
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qing Li
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunzhe Zhou
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maochun Hong
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhao D, Guo L, Li Q, Yue C, Han B, Liu K, Li H. Multi-Functional Lanthanide Metallopolymer: Self-Healing and Photo-Stimuli-Responsive Dual-Emitting Luminescence for Diverse Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405164. [PMID: 39036828 DOI: 10.1002/adma.202405164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Photoluminescent metallopolymers displaying photo-stimuli-responsive properties are emerging as promising materials with versatile applications in photo-rewritable patterns, wearable UV sensors, and optical encryption anti-counterfeiting. However, integrating these materials into practical applications that require fast response times, lightweight qualities, fatigue resistance, and multiple encryption capabilities poses challenges. In this study, luminescent photochromic lanthanide (Ln) metallopolymers with rapid self-healing properties are developed by cross-linking terpyridine (Tpy)- and spiropyran (SP)- functionalized polyurethane chains through Ln-Tpy coordination bonds and H-bonds among polymer chains. The resulting products exhibit a range of intriguing features: i) photo-stimuli responsiveness using spiropyran monomers without additional dopants; ii) dual-emitting performance under UV-light due to Ln-Tpy and open-ring spiropyran moieties; iii) satisfactory mechanical properties and self-healing abilities from polymer chains; iv) multiple control switches for luminescence colors through photostimulation or feed ratio adjustments. Leveraging these attributes, the developed material introduces novel opportunities for light-writing applications, advanced information encryption, UV-sensing wearable devices, and insights into designing multifunctional intelligent materials for the future.
Collapse
Affiliation(s)
- Di Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Lei Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Qianrui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Chunmei Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| |
Collapse
|
8
|
Li W, Zhang J, Fan L, Zhao Y, Sun C, Li W, Chang Z. Construction of a novel Eu-MOF material based on different detection mechanisms and its application in sensing pollutants aniline, F - and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124223. [PMID: 38574609 DOI: 10.1016/j.saa.2024.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Aniline is an organic pollutant with carcinogenicity and teratogenicity, while F- and Hg2+ are toxic ions that are easily soluble in water. When they are released to the environment, they will pose a threat to human health. Designing a material that can simultaneously detect three types of pollutants is of great significance. In this paper, a novel rare earth metal organic framework material (Eu-MOF) with three-dimensional structure based on 1-methylimidazole-4,5-dicarboxylic acid was synthesized for the first time through solvent thermal method. It has excellent luminescent performance and can be used as a multifunctional fluorescent probe to detect aniline, F-, and Hg2+ based on photoinduced electron transfer, energy competitive absorption, and ion exchange mechanisms, with detection limits of 1.79 × 10-8, 8.13 × 10-8, and 8.83 × 10-7 M, respectively. It is worth noting that Eu-MOF can detect F- and Hg2+ in real water samples, such as lake water and green tea water, with favorable recovery rates.
Collapse
Affiliation(s)
- Wenqing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyue Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhan Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Xi XJ, Li Y, Lang F, Pang J, Bu XH. Reticular synthesis of 8-connected carboxyl hydrogen-bonded organic frameworks for white-light-emission. Chem Sci 2024; 15:4529-4537. [PMID: 38516073 PMCID: PMC10952064 DOI: 10.1039/d3sc06410g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.
Collapse
Affiliation(s)
- Xiao-Juan Xi
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
10
|
Wang Q, Ai Z, Guo Q, Wang X, Dai C, Wang H, Sun J, Tang Y, Jiang D, Pei X, Chen R, Gou J, Yu L, Ding J, Wee ATS, Liu Y, Wei D. Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules. J Am Chem Soc 2023; 145:10035-10044. [PMID: 37097713 DOI: 10.1021/jacs.2c13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhaolin Ai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yanan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xinjie Pei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Ma K, Li J, Ma H, Yang Y, Yang H, Lu J, Li Y, Dou J, Wang S, Liu S. 2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Zhang Z, Ye Y, Xiang S, Chen B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc Chem Res 2022; 55:3752-3766. [PMID: 36454588 DOI: 10.1021/acs.accounts.2c00686] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.
Collapse
Affiliation(s)
- Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
13
|
AIEE Active Stilbene Based Fluorescent Sensor with Red-Shifted Emission for Vapor Phase Detection of Nitrobenzene and Moisture Sensing. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
15
|
Recent advancements in the development of photo- and electro-active hydrogen-bonded organic frameworks. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zheng S, Li L, Chen L, Fan Z, Xiang F, Yang Y, Zhang Z, Xiang S. Two Water Stable Phosphate‐Amidinium Based Hydrogen‐Bonded Organic Framework with Proton Conduction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shihe Zheng
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Zhiwen Fan
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| |
Collapse
|
17
|
Dai W, Wei W, Yao Z, Xiang S, Zhang Z. A photochromic NDI-based framework for the facile hydrazine sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Yu C, Wang X, Zhao CX, Yang S, Gan J, Wang Z, Cao Z, Qu DH. Optically probing molecular shuttling motion of [2]rotaxane by a conformation-adaptive fluorophore. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Amidinium sulfonate hydrogen-bonded organic framework with fluorescence amplification function for sensitive aniline detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|