1
|
Ma L, Liu Y, Jin X, Jiang T, Zhou L, Wang Q, Tian H, Ma X. Triplet Exciplex Mediated Multi-Color Ultra-Long Afterglow Mate-rials. Angew Chem Int Ed Engl 2025; 64:e202500847. [PMID: 39901619 DOI: 10.1002/anie.202500847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Organic long-lived phosphorescent materials demonstrating ultra-long photoluminescence have practical advantages owing to their flexible design and easy processability. However, the exact photophysical process underpinning the persistent-luminescent continues to elude full understanding, and the principles governing the compatibility of hosts and guests remain elusive. In this work, a new type of nonradiative energy transfer mechanism is proposed for the bi-component RTP system. Different from Förster resonance energy transfer or Dexter-type energy transfer, this energy transfer mechanism primarily relies on a triplet exciplex to exchange the electron. This facilitates the formation of triplet excitons that are otherwise difficult to excite directly. An evaluation methodology is devised to gauge the potential of a specific dopant-host combination toward generating pronounced afterglow. According to this framework, the enhancement of the afterglow is proportional to the decrease in the activation energy (ΔG≠) associated with the electron transfer reaction between the dopant and the host. Notably, when the ΔG≠ too larger, no observable afterglow occurs, as higher ΔG≠ values significantly impede the electron transfer reaction between the two components. Furthermore, the remarkable dependence of afterglow intensity on the dopant concentration renders the bi-component RTP system highly promising for applications requiring ultra-high sensitivity and broad-spectrum detection capabilities.
Collapse
Affiliation(s)
- Liangwei Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yiwei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Tao Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Lei Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qiaochun Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
2
|
Sun S, Li T, Zhu Y, Wang G, Yin F, Li F, Tao F, Wang L, Li G. Construction of starch-based room temperature phosphorescence materials with wide color-tunable long afterglow and even persistent near-infrared luminescence via Förster resonance energy transfer. Int J Biol Macromol 2025; 284:138175. [PMID: 39615724 DOI: 10.1016/j.ijbiomac.2024.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Environmentally friendly natural polymer-based room temperature phosphorescence (RTP) materials exhibit promising applications in anti-counterfeiting and information encryption. However, the construction of natural polymer-based RTP materials with multicolor long afterglow and even persistent near-infrared (NIR) luminescence remains a tough challenge. Here, starch (S)-based ultralong RTP materials with wide color-tunability, persistent NIR luminescence are conveniently prepared through Förster resonance energy transfer (FRET) strategies. The binary doping system S-4-carboxyphenylboric acid with an ultralong phosphorescence lifetime of up to 449 ms is used as energy donor, and commercial dyes fluorescein, rhodamine 6G and lissamine rhodamine B (LRB) are selected as energy acceptors. By adjusting the weight ratio of energy donor and acceptor, tunable multicolor long afterglow from blue to yellow-green, purple, red and even nearly white (0.32, 0.33) can be successfully achieved through the triplet-to-singlet FRET process. The quaternary doping system displays persistent NIR luminescence band from 650 to 800 nm along with the longest phosphorescence lifetime of up to 131 ms via the stepwise FRET process using LRB as the intermediate energy acceptor and NIR dye Nile blue A as the energy acceptor. Satisfactorily, the prepared S-based RTP materials with wide-range color-tunable long afterglow demonstrate potential applications in multimode information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Shaochen Sun
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tianyu Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yan Zhu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Guangqun Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Faqu Yin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Farong Tao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Liping Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guang Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
3
|
Ren C, Wang Z, Ou H, Wang T, Zhao Z, Wei Y, Yuan H, Tan Y, Yuan WZ. Multi-Responsive Afterglows from Aqueous Processable Amorphous Polysaccharide Films. SMALL METHODS 2024; 8:e2300243. [PMID: 37491782 DOI: 10.1002/smtd.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based room-temperature phosphorescence (RTP) materials, especially polysaccharide-based RTP materials, earn sustained attention in the fields of anti-counterfeiting, data encryption, and optoelectronics owing to their green regeneration, flexibility, and transparency. However, those with both ultralong phosphorescence lifetime and excitation wavelength-dependent afterglow are rarely reported. Herein, a kind of amorphous RTP material with ultralong lifetime of up to 2.52 s is fabricated by covalently bonding sodium alginate (SA) with arylboronic acid in the aqueous phase. The resulting polymer film exhibits distinguished RTP performance with excitation-dependent emissions from cyan to green. Specifically, by co-doping with other fluorescent dyes, further regulation of the afterglow color from cyan to yellowish-green and near-white can be achieved through triplet-to-singlet Förster resonance energy transfer. In addition, the water-sensitive properties of hydrogen bonds endow the RTP property of SA-based materials with water/heat-responsive characteristics. On account of the color-tunable and stimuli-responsive afterglows, these smart materials are successfully applied in data encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Chunguang Ren
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hanlin Ou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Tianjie Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zhipeng Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yuting Wei
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| |
Collapse
|
4
|
Jin X, Zhao H, Bai H, Ding L, Chen W. Facile preparation strategy of novel B 2O 3-modified carbon dots with 1.99 s ultra-long Room-Temperature phosphorescence for multidimensional encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123473. [PMID: 37857077 DOI: 10.1016/j.saa.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Facile synthesis of Ultralong room-temperature phosphorescence (URTP) with super stability and long-afterglow are of great significance, but hard to achieve. Herein, a brilliant gram-scale and solvent-free pyrolysis treatment strategy has been developed to prepare high-performance URTP carbon dots (CDs) by regulating different temperature (250-500 °C). The optimized CDs (CD-400) showed room-temperature phosphorescence 1.99 s and lasting over 22 s to naked eyes, which is superior to most of the reported URTP CDs. Owing to the stabilization effects of the modified B2O3 layer on the surface, the homogenous distribution of CD-400 with the narrow diameter of 1.44 nm was constructed, displaying a superb stability through hydrogen-bond network. In addition, the doping atoms (N, O) greatly enhanced the n-π* transitions and stabilized triplet excitons radiative transitions, facilitating the effective intersystem crossing (ISC) and the RTP emissions. More importantly, the B2O3-modified CDs were successfully applied in the multi-level information encryption (time-resolved RTP performance) and fingerprint identification (bifurcation, whorl and termination details).
Collapse
Affiliation(s)
- Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China; Yulin Boyi-Jingking Research Institute of Industrial Technology Development Research, Yulin, Shaanxi Province 719054, PR China.
| | - Huaqi Zhao
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Liu Ding
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China.
| |
Collapse
|
5
|
Yang Y, Li A, Yang Y, Wang J, Chen Y, Yang K, Tang BZ, Li Z. Multi-stimulus Room Temperature Phosphorescent Polymers Sensitive to Light and Acid cyclically with Energy Transfer. Angew Chem Int Ed Engl 2023; 62:e202308848. [PMID: 37590031 DOI: 10.1002/anie.202308848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The stimulus-responsive room temperature phosphorescent (RTP) materials have endowed wide potential applications. In this work, by introducing naphthalene and spiropyran (SP) into polyacrylamide as the energy donor and acceptor respectively, a new kind of brilliant dynamic color-tunable amorphous copolymers were prepared with good stability and processibility, and afterglow emissions from green to orange in response to the stimulus of photo or acid, thanks to multi-responsibility of SP and the energy transfer between naphthalene and SP. In addition to the deeply exploring of the inherent mechanism, these copolymers have been successfully applied in dynamically controllable applications in information protection and delivery.
Collapse
Affiliation(s)
- Yuqi Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Kun Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Shenzhen Institute of Molecular Aggregates Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Ma L, Liu Y, Tian H, Ma X. Switching Singlet Exciton to Triplet for Efficient Pure Organic Room-Temperature Phosphorescence by Rational Molecular Design. JACS AU 2023; 3:1835-1842. [PMID: 37502164 PMCID: PMC10369410 DOI: 10.1021/jacsau.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The design and regulation of phosphors are attractive but challenging because of the spin-forbidden intersystem crossing (ISC) process. Here, a new perspective on the enhancement of the ISC is proposed and demonstrated. Different from current strategies, the ISC yield (ΦISC) is enhanced by decreasing the fluorescence radiative transition rate constant (kF) via rational molecular designing rather than boosting the spin-orbit coupling by decorating the molecular skeleton with a heavy atom, heteroatom, or carbonyl. The kF of the designed molecule in this case is associated with the substituent position of the methoxy group, which alters the distribution of the front orbitals. The S0 → S1 transition of these compounds evolves from a bright state to a dark state gradually with the variation of the substituent position, accompanied by the decrease of kF and increase of ΦISC. The fluorescence emission is switched to phosphorescence emission successfully by regulating the kF. This work provides an alternative strategy to design efficient room-temperature phosphorescence material.
Collapse
|
7
|
Fu X, Jin H, Ma Z, Zhang X, Qian C, Li Z, Chi Z, Ma Z. How Matrixes Influence Room Temperature Ultralong Organic Phosphorescence: 4-Dimethylaminopyridine vs Carbazole Derivative. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327087 DOI: 10.1021/acsami.3c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How matrixes influence room temperature ultralong organic phosphorescence (RTUOP) in the doping systems is a fundamental question. In this study, we construct guest-matrix doping phosphorescence systems by using the derivatives (ISO2N-2, ISO2BCz-1, and ISO2BCz-2) of three phosphorescence units (N-2, BCz-1, and BCz-2) and two matrixes (ISO2Cz and DMAP) and systematically investigate their RTUOP properties. Firstly, the intrinsic phosphorescence properties of three guest molecules were studied in solution, in the pure powder state, and in PMMA film. Then, the guest molecules were doped into the two matrixes with increasing weight ratio. To our surprise, all of the doping systems in DMAP feature a longer lifetime but weaker phosphorescence intensity, while all of the doping systems in ISO2Cz exhibit a shorter lifetime but higher phosphorescence intensity. According to the single-crystal analysis of the two matrixes, resemblant chemical structures of the guests and ISO2Cz enable them to approach each other and interact with each other via a variety of interactions, thus facilitating the occurrence of charge separation (CS) and charge recombination (CR). The HOMO-LUMO energy levels of the guests match well with the ones of ISO2Cz, which also significantly promotes the efficiency of the CS and CR process. To our best knowledge, this work is a systematic study on how matrixes influence the RTUOP of guest-matrix doping systems and may give deep insight into the development of organic phosphorescence.
Collapse
Affiliation(s)
- Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiwen Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Xue Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Qian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zewei Li
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wang T, Liu M, Mao J, Liang Y, Wang L, Liu D, Wang T, Hu W. Recent advances in long-persistent luminescence materials based on host–guest architecture. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Liu M, Zheng C, Zheng Y, Wu X, Shen J. Binding model-tuned room-temperature phosphorescence of the bromo-naphthol derivatives based on cyclodextrins. RSC Adv 2022; 12:19313-19316. [PMID: 35865586 PMCID: PMC9248367 DOI: 10.1039/d2ra03046b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, bromo-naphthol derivatives were synthesized to investigate the influence on their phosphorescence emission efficiency resulting from different binding models with cyclodextrins. And the results indicated that α-cyclodextrin could result in the highest phosphorescence emission efficiency, due to the tight encapsulation of the bromo-naphthol motif into the cavity. Bromo-naphthol derivatives were synthesized to form host–guest complexation with cyclodextrins with different cavity sizes for the investigation of binding model-mediated room-temperature phosphorescence efficiency.![]()
Collapse
Affiliation(s)
- Ming Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 32503 China
| | - Chen Zheng
- College of Life and Environmental Science, Wenzhou University Wenzhou Zhejiang 325000 China
| | - Yujing Zheng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 32503 China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou Zhejiang 32503 China .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325001 China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 32503 China .,Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou Zhejiang 32503 China .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325001 China
| |
Collapse
|
11
|
Li T, Zheng Y, Wu C, Yan C, Zhang C, Gao H, Chen Q, Zhang K. Crosslink-enhanced strategy to achieve multicolor long-lived room temperature phosphorescent films with excellent photostability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhai Y, Wang P, Zhang X, Liu S, Li J, Chen Z, Li S. Carbon dots confined in 3D polymer network: Producing robust room temperature phosphorescence with tunable lifetimes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Han Y, Wang Y, Liu X, Chen J, Qiu H. Green- and Red-Emitting Fluorescent Silicon Nanoparticles: Synthesis, Mechanism, and Acid Phosphatase Sensing. ACS APPLIED BIO MATERIALS 2022; 5:295-304. [PMID: 35014839 DOI: 10.1021/acsabm.1c01086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Until now, the green and facile synthesis of multicolor fluorescent silicon nanoparticles (SiNPs) with favorable biocompatibility for cellular imaging and biosensors is still a challenge. Herein, a facile one-step room temperature method for preparing fluorescent SiNPs displayed different emission wavelengths was reported. Green and red fluorescent SiNPs (G-SiNPs and R-SiNPs) were synthesized by adjusting the concentration of the reducing agent 2,4-diaminophenol hydrochloride when the amount of N-[3-(trimethoxysilyl)-propyl]-ethylenediamine was consistent. Characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, the results revealed that the G-SiNPs and R-SiNPs were assembled by polymerization of different building blocks, and the emission characteristics of these SiNPs were attributed to the difference in their structural composition and particle size. Interestingly, these fluorescent SiNPs exhibited excellent water solubility, salt tolerance, pH stability, photobleaching resistance, and low cytotoxicity, which facilitated multicolor cell imaging, and further led to these SiNPs were highly attractive in a variety of applications, such as multi-channel sensing and biological imaging. Furthermore, the R-SiNPs have shown the potential to detect acid phosphatase, which is a biomarker of prostate cancer.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou 730000, China
| | - Xingchen Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
14
|
Liang R, Huo L, Yu A, Wang J, Jia C, Li J. A micro-wave strategy for synthesizing room temperature phosphorescent materials. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ding B, Ma X. A Simple, Easy Preparation and Tunable Strategy for Preparing Organic Room-Temperature Phosphorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14229-14236. [PMID: 34847667 DOI: 10.1021/acs.langmuir.1c02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eye-catching organic room-temperature phosphorescence (RTP) is becoming more and more universal through various strategies, such as crystal engineering, macrocyclic inclusion, host-guest doping, and copolymerization. It is always the pursuit of researchers to prepare high-efficiency RTP materials by the simplest strategy. The doping strategy is one of the most simple and effective strategies and involves mixing phosphor with rigid host material. The principle of the doping RTP system has developed from a conventional rigidity effect of the host through the host-guest interaction. This perspective aims at multifunctional host materials and summarizes the recent development of doping organic RTP systems. Doping systems play more and more important roles in the development of long-afterglow and high-yield RTP materials. The application scenarios of RTP are becoming wider and wider.
Collapse
Affiliation(s)
- Bingbing Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Tunable room-temperature phosphorescence and circularly polarized luminescence encoding helical supramolecular polymer. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1104-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|