1
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Cen R, Liu M, He J, Pan D, Chen L, Huang Y, Tao Z, Xiao X. Double-cavity nor-seco-cucurbit[10]uril-based supramolecular assembly for selective detection and removal of trinitrophenol. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Chen K, Zhu ZQ, Zhang MH, Yang X, Li J, Chen C, Redshaw C. 4,4′-Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics. CrystEngComm 2023. [DOI: 10.1039/d2ce01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three new 3D TMeQ[6]-based coordination polymers of alkali-earth metal ions (Ca2+, Sr2+ and Ba2+) were characterized, and one can highly selectively detect NFX (norfloxacin) molecules via a fluorescence quenching effect.
Collapse
Affiliation(s)
- Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Zhao-Qiang Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Ming-Hui Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Xiang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Jie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Chen Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
6
|
Gao ZZ, Shen L, Hu YL, Sun JF, Wei G, Zhao H. Supramolecular Crystal Networks Constructed from Cucurbit[8]uril with Two Naphthyl Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010063. [PMID: 36615258 PMCID: PMC9822147 DOI: 10.3390/molecules28010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Naphthyl groups are widely used as building blocks for the self-assembly of supramolecular crystal networks. Host-guest complexation of cucurbit[8]uril (Q[8]) with two guests NapA and Nap1 in both aqueous solution and solid state has been fully investigated. Experimental data indicated that double guests resided within the cavity of Q[8], generating highly stable homoternary complexes NapA2@Q[8] and Nap12@Q[8]. Meanwhile, the strong hydrogen-bonding and π···π interaction play critical roles in the formation of 1D supramolecular chain, as well as 2D and 3D networks in solid state.
Collapse
Affiliation(s)
- Zhong-Zheng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Lei Shen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Yu-Lu Hu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Ji-Fu Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Mineral Resources, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Hui Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| |
Collapse
|
7
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Yang MX, Luo Y, Zhang W, Lin WH, He J, Shan PH, Tao Z, Xiao X. Cucurbit[10]uril-mediated Supramolecular Assembly for Optically Tunable Dimers and Near White-light Emissive Materials. Chem Asian J 2022; 17:e202200378. [PMID: 35578824 DOI: 10.1002/asia.202200378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Indexed: 11/10/2022]
Abstract
Cucurbit[10]uril (Q[10]), the cucurbit[ n ]uril with the greatest cavity, exhibits several new features in the development of the host-guest complex. Thus, based on Q[10] and π-conjugated molecule, oligo(p-phenylenevinylene) derivative (OPVCOOH), the host-guest complexes with three different interaction ratios of 1:2, 2:2, and 3:2 assemblies (Q[10]: guest) were fabricated. Depending on the host/guest ratio, the emission color of these complexes ranged from blue to yellow-green. The extra Fe 2+ coordinated with a bare carboxyl group of the Q[10]-OPVCOOH (3:2) assembly, obstructing its rotaxane structure and forming Q[10]-OPVCOOH-Fe 2+ assembly, which may be used as a coating for near-white LED bulbs.
Collapse
Affiliation(s)
- Mao-Xia Yang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Yang Luo
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, guiyang, guizhou,china, 550025, guizhou,china, CHINA
| | - Wei Zhang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Wen-Hao Lin
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Jiao He
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Pei-Hui Shan
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Zhu Tao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Xin Xiao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, 550025, Guiyang, CHINA
| |
Collapse
|
9
|
Shen H, Liu C, Zheng J, Tao Z, Nie H, Ni XL. Cucurbit[8]uril-Assisted Nucleophilic Reaction: A Unique Supramolecular Approach for Cyanide Detection and Removal from Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55463-55469. [PMID: 34763418 DOI: 10.1021/acsami.1c17666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A unique supramolecular approach of preparing and using a cucurbit[8]uril (Q[8])-based dynamic host-guest assembly for cyanide sensing in and removal from water has been successfully developed. The dicyanovinyl-attached cationic guest (1) was designed as the fluorescent response moiety for the detection of the cyanide anion via a nucleophilic addition reaction in the assist of the Q[8]-based 2:2 quaternary complexes. Furthermore, the reaction of cyanide with 1 further switched the Q[8]-based host-guest assemblies from the 2:2 complexes to the 1:1 supramolecular polymers that precipitate in water. Thus, the macrocyclic-based dynamic host-guest assembly has potential use in applications for solving the problem of toxic anion pollutants present in aqueous environments.
Collapse
Affiliation(s)
- Hongqun Shen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Chun Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jun Zheng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|