1
|
Xie F, Cai X, Li Y, Zhang Y, Lin W. Theoretical Insights into the Efficient Reduction of Nitrate to Ammonia on Crystalline Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3366-3375. [PMID: 39739904 DOI: 10.1021/acsami.4c18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The nitrate reduction reaction (NO3RR) has emerged as a promising approach for wastewater treatment and ammonia (NH3) synthesis. Poly(triazine imide)/LiCl (PTI/LiCl), a highly crystalline carbon nitride with a well-defined structure, has shown significant potential in this field. In this study, the electronic properties and catalytic performance of PTI/LiCl for NO3RR were investigated through theoretical calculations. Band structure and projected density of states (PDOS) analyses show that the intercalation of Li+ and Cl- ions within the PTI pores enhances electronic conductivity and improves its electronic properties. The reduction of nitrate to NH3 through a series of intermediates on the PTI/LiCl (001) surface shows exothermic free energy changes for each elementary step. The catalyst demonstrates outstanding selectivity and stability, effectively suppressing the competitive hydrogen evolution reaction and byproduct formation. Charge density difference and PDOS analyses confirm the orbital interactions between absorbed NO3 and Li ions. The study highlights the potential of PTI/LiCl as a low-cost, efficient electrocatalyst for NO3RR and provides theoretical and practical insights for the design of environmentally friendly catalysts.
Collapse
Affiliation(s)
- Fangting Xie
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Cai
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Li
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Yongfan Zhang
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Lin
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
2
|
Bai X, Luo J, Wu K, Sun C, Pang H, Zhang H, Khosla A. In situRaman investigation to electrochemical synthesis of ammonia on Pd nanocrystals. NANOTECHNOLOGY 2024; 36:045401. [PMID: 39348846 DOI: 10.1088/1361-6528/ad8164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
Nitrate and nitrite are widely present in industrial wastewater and domestic sewage, so electrocatalytic reduction of both nitrate and nitrite to ammonia synthesis is considered to be a sustainable development approach. Pd nanostructures have attracted much attention because of their high activity in catalyzing the nitrate electrochemical reduction reaction. Here we prepare Pd nanocube and octahedron for the electrochemical reduction of nitrate and nitrite. It is found that Pd octahedron shows slightly higher activity toward nitrate reduction than Pd nanocube, while for nitrite reduction, Pd octahedron shows much higher activity than Pd nanocube. The ammonia yield rate is more potential-dependent.In situRaman characterization further confirms the existence of adsorbed ammonia on the surface of nanocube and octahedron, indicating similar reduction pathways on (111)-facet octahedron and (100)-facet nanocube.
Collapse
Affiliation(s)
- Xiaoxia Bai
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Jingying Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Keming Wu
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Congcong Sun
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Haili Pang
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Hui Zhang
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Ajit Khosla
- Department of Applied Chemistry, Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Guo Z, Fang Y, Tang C, Meng F, Miao N, Sa B, Zhou J, Sun Z. Rational design of bimetallic MBene for efficient electrocatalytic nitrogen reduction. J Colloid Interface Sci 2024; 670:687-697. [PMID: 38788436 DOI: 10.1016/j.jcis.2024.05.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is one of the most promising approaches to achieving green and efficient NH3 production. However, the designs of efficient NRR catalysts with high activity and selectivity still are severely hampered by inherent linear scaling relations among the adsorption energies of NRR intermediates. Herein, the properties of ten M3B4 type MBenes have been initially investigated for efficient N2 activation and reduction to NH3via first-principles calculations. We highlight that Cr3B4 MBene possesses remarkable NRR activity with a record-low limiting potential (-0.13 V). Then, this work proposes descriptor-based design principles that can effectively evaluate the catalytic activity of MBenes, which have been further employed to design bimetallic M2M'B4 MBenes. As a result, 5 promising candidates including Ti2YB4, V2YB4, V2MoB4, Nb2YB4, and Nb2CrB4 with excellent NRR performance have been extracted from 20 bimetallic MBenes. Further analysis illuminates that constructing bimetallic MBenes can selectively tune the adsorption strength of NHNH2** and NH2NH2**, and break the linear scaling relations between their adsorption energies, rendering them ideal for NRR. This work not only pioneers the application of MBenes as efficient NRR catalysts but also proposes rational design principles for boosting their catalytic performance.
Collapse
Affiliation(s)
- Yaoyu Zhang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhonglu Guo
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yi Fang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Fanbin Meng
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Yu Y, Wei X, Chen W, Qian G, Chen C, Wang S, Min D. Design of Single-Atom Catalysts for E lectrocatalytic Nitrogen Fixation. CHEMSUSCHEM 2024; 17:e202301105. [PMID: 37985420 DOI: 10.1002/cssc.202301105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The Electrochemical nitrogen reduction reaction (ENRR) can be used to solve environmental problems as well as energy shortage. However, ENRR still faces the problems of low NH3 yield and low selectivity. The NH3 yield and selectivity in ENRR are affected by multiple factors such as electrolytic cells, electrolytes, and catalysts, etc. Among these catalysts are at the core of ENRR research. Single-atom catalysts (SACs) with intrinsic activity have become an emerging technology for numerous energy regeneration, including ENRR. In particular, regulating the microenvironment of SACs (hydrogen evolution reaction inhibition, carrier engineering, metal-carrier interaction, etc.) can break through the limitation of intrinsic activity of SACs. Therefore, this Review first introduces the basic principles of NRR and outlines the key factors affecting ENRR. Then a comprehensive summary is given of the progress of SACs (precious metals, non-precious metals, non-metallic) and diatomic catalysts (DACs) in ENRR. The impact of SACs microenvironmental regulation on ENRR is highlighted. Finally, further research directions for SACs in ENRR are discussed.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xiaoxiao Wei
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Wangqian Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Guangfu Qian
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| |
Collapse
|
5
|
Arias-Camacho IM. Influence of the Hubbard U Parameter on the Structural, Electronic, Magnetic, and Transport Properties of Cr/Fe/Zr-Based MBenes. ACS OMEGA 2023; 8:45003-45012. [PMID: 38046292 PMCID: PMC10688204 DOI: 10.1021/acsomega.3c06539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Although relatively new, MBenes are gaining prominence due to their outstanding mechanical, electronic, magnetic, and chemical properties, and they are predicted to be good electrodes for catalytic processes as well as robust 2D magnets with high critical temperatures, to mention some of their intriguing attributes. From all their multiple stoichiometries, a theoretical study of their orthorhombic and hexagonal phases in the framework of density-functional theory is performed in this work. The results suggest that their properties are strongly dependent on the initial conditions considered in the theoretical approach and must be treated with caution. However, and independently of these factors, all of them are demonstrated to be energetically stable, show a metallic behavior, and exhibit, in specific cases, large magnetic moments per unit cell, exceeding 6.5 μB in the case of the orthorhombic-type Cr2B2, making them suitable as robust 2D magnets with room critical temperature. These findings represent an important step toward a better understanding of MBenes, opening several windows to future research in energy conversion and storage, sensing, catalysis, biotechnology, or spintronics.
Collapse
|
6
|
Meng S, Sun M, Zhang P, Zhou C, He C, Zhang H, Liu Y, Xiong Z, Zhou P, Lai B. Metal Borides as Excellent Co-Catalysts for Boosted and Long-Lasting Fenton-like Reaction: Dual Co-Catalytic Centers of Metal and Boron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12534-12545. [PMID: 37555746 DOI: 10.1021/acs.est.3c03212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The continuous electron supply for oxidant decomposition-induced reactive oxygen species (ROS) generation is the main contributor for the long-standing micropollutant oxidation in the iron-based advanced oxidation processes (AOPs). Herein, as a new class of co-catalysts, metal borides with dual active sites and preeminent conductive performance can effectively overcome the inherent drawback of Fenton-like reactions by steadily donating electrons to inactive Fe(III). Among the metal borides, tungsten boride (WB) exhibits a significant co-catalytic performance run ahead of common heterogeneous co-catalysts and exceptionally high stability. Based on qualitative and semi-quantitative tests, the hydroxyl radical, sulfate radical, and iron(IV)-oxo complex are all produced in the WB/Fe(III)/PDS system and Fe(IV)-induced methyl phenyl sulfoxide decomposition is up to 72%. Moreover, the production efficiency of ROS and relative proportions of radical and nonradical pathways change with various experimental conditions (dosages of PDS, WB, and solution pH) and water matrices. The rate-determining step of Fe(II) regeneration is greatly accelerated resulting from the synergetic effect between exposed metallic reactive sites and nonmetallic boron with reductive properties of WB. In addition, the self-dissolution of surface tungsten oxide and boron oxide leads to a renovated surface for sustainable Fe(III) reduction in long-term operations. Our discovery provides an efficient and sustainable strategy in the field of enhanced AOPs for water remediation.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Hermawan A, Alviani VN, Wibisono, Seh ZW. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NO x reduction reaction. iScience 2023; 26:107410. [PMID: 37593457 PMCID: PMC10428125 DOI: 10.1016/j.isci.2023.107410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| | - Wibisono
- Research Center for Radiation Detection and Nuclear Analysis Technology, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
8
|
Kong L, Liang X, Wang M, Lawrence Wu CM. Role of transition metal d-orbitals in single-atom catalysts for nitric oxide electroreduction to ammonia. J Colloid Interface Sci 2023; 647:375-383. [PMID: 37269734 DOI: 10.1016/j.jcis.2023.05.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Recently, surging interests exist in direct electrochemical ammonia (NH3) synthesis from nitric oxide (NO) due to the dual benefit of NH3 synthesis and NO removal. However, designing highly efficient catalysts is still challenging. Based on density functional theory, the best ten candidates of transition-metal atoms (TMs) embedded in phosphorus carbide (PC) monolayer is screened out as highly active catalysts for direct NO-to-NH3 electroreduction. The employment of machine learning-aided theoretical calculations helps to identify the critical role of TM-d orbitals in regulating NO activation. A V-shape tuning rule of TM-d orbitals for the Gibbs free energy change of NO or limiting potentials is further revealed as the design principle of TM embedded PC (TM-PC) for NO-to-NH3 electroreduction. Moreover, after employing effective screening strategies including surface stability, selectivity, the kinetic barrier of potential-determining step, and thermal stability comprehensively studied for the ten TM-PC candidates, only Pt embedded PC monolayer has been identified as the most promising direct NO-to-NH3 electroreduction with high feasibility and catalytic performance. This work not only offers a promising catalyst but also sheds light on the active origin and design principle of PC-based single-atom catalysts for NO-to-NH3 conversion.
Collapse
Affiliation(s)
- Lingyan Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Maohuai Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Zheng X, Yan Y, Li X, Liu Y, Yao Y. Theoretical insights into dissociative-associative mechanism for enhanced electrochemical nitrate reduction to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130679. [PMID: 36580786 DOI: 10.1016/j.jhazmat.2022.130679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The development of electrochemical nitrate reduction reaction (NO3RR) is a "two birds-one stone" method, which can not only remove NO3- pollutant, but also produce valuable ammonia (NH3). However, a mechanistic understanding of the nitrate reduction process remains very limited. Herein, we highlighted a dissociative-associative mechanism for the NO3RR, in which the N-O bond of nitrate is initially broken to form *O and *NO2 intermediate adsorbed on two active sites (dissociation process) and then subsequently hydrogenated and reduced to ammonia (association process). By taking a series of diatomic site catalysts (CuTM/g-CN and CuTM/N6C, TM= Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as models, we systematically investigate the dissociative-associative mechanism for the NO3RR and compared with the Cu-based single-atom catalysts which follows the traditional directly associative mechanism. Density functional theory (DFT) calculations show that dissociative-associative mechanism is energetically favorable on seven catalysts (CuTi/g-CN, CuV/g-CN, CuMn/g-CN, CuCo/g-CN, CuV/N6C, CuCr/N6C and CuFe/N6C) with the significantly reduced limiting potential of - 0.14 V to - 0.47 V. Specifically, an efficiently screening strategy was proposed to determine the dissociative-associative or directly associative mechanism for NO3RR. This work can provide useful guideline for the rational design and development of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Xiaonan Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yu Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xiaoxiao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
10
|
Zhang Q, He C, Huo J. Epoxidation of O2 and C3H6 on M1/PTA Single-Atom Catalyst: Theory and Calculation Simulations. Catal Letters 2023. [DOI: 10.1007/s10562-023-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Computational screening of transition metal atom doped C3N as electrocatalysts for nitrogen fixation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Nitrogen Reduction Reaction Catalyzed by Diatomic Metals Supported by N-Doped Graphite. Catalysts 2022. [DOI: 10.3390/catal13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this article, for the transition metal-nitrogen ligand Mn-M@N6-C (M = Ag, Bi, Cd, Co, Cr, Cu, Fe, Hf, Ir, Mo, Nb, Ni, Os, Pd, Pt, Re, Rh, Ru, Sc, Ta, Tc, V, Y, Zn, Zr, Ti, W), by comparing the amount of change in the length of the N-N triple-bond, and calculating the adsorption energy of N2 and the change of charge around N2, it is shown that the activation effect of Sc, Ti, Y, Nb-Mn@N6-C on the single-atomic layer of graphite substrate is relatively good. The calculation of structural stability shows that the Mn-M@N6-C (M = Sc, Ti, Y) load is relatively stable when it is on the single-atomic layer of the graphite substrate. Through calculations, a series of data such as the adsorption free energy and reaction path are obtained, and the final results show that the preferred reaction mechanism of NRR is the alternating path on Mn-Ti@N6-C, and the reaction limit potential is only 0.16 eV, Mn-Ti@N6-C and has good NRR activity. In addition, the vertical path on Mn-Y@N6-C has a reaction limit potential of 0.39 eV. Mn-Y@N6-C also has good NRR catalyzing activity.
Collapse
|
13
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
14
|
Tao Y, Liu Z, Zheng J, Zhou J, He D, Ma J. Microalgae production in human urine: Fundamentals, opportunities, and perspectives. Front Microbiol 2022; 13:1067782. [DOI: 10.3389/fmicb.2022.1067782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The biological treatment of source-separated human urine to produce biofuel, nutraceutical, and high-value chemicals is getting increasing attention. Especially, photoautotrophic microalgae can use human urine as media to achieve environmentally and economically viable large-scale cultivation. This review presents a comprehensive overview of the up-to-date advancements in microalgae cultivation employing urine in photobioreactors (PBRs). The standard matrices describing algal growth and nutrient removal/recovery have been summarized to provide a platform for fair comparison among different studies. Specific consideration has been given to the critical operating factors to understand how the PBRs should be maintained to achieve high efficiencies. Finally, we discuss the perspectives that emphasize the impacts of co-existing bacteria, contamination by human metabolites, and genetic engineering on the practical microalgal biomass production in urine.
Collapse
|
15
|
Wang G, Chen Q, An X, Liu Q, Xie L, Zhang J, Yao W, Xiaonan L, Sun S, Sun X, Kong Q. Ambient ammonia production via electrocatalytic nitrite reduction over MoO2 nanoparticles self-supported on molybdenum plate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Tursun M, Wu C. Single Transition Metal Atoms Anchored on Defective MoS 2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorg Chem 2022; 61:17448-17458. [DOI: 10.1021/acs.inorgchem.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mamutjan Tursun
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
- College of Chemistry and Environmental Science, Kashgar University, Kashgar844000, Xinjiang, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
| |
Collapse
|
17
|
A promising controllable CO2 capture and separation materials for CO2/CH4/H2 under electric field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Xi M, He C, Yang H, Fu X, Fu L, Cheng X, Guo J. Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Mao Y, Qiu J, Zhang P, Fei Z, Bian C, Janani BJ, Fakhri A. A strategy of silver Ferrite/Bismuth ferrite nano-hybrids synthesis for synergetic white-light photocatalysis, antibacterial systems and peroxidase-like activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Yin G, Jameel Ibrahim Alazzawi F, Mironov S, Reegu F, El-Shafay A, Lutfor Rahman M, Su CH, Lu YZ, Chinh Nguyen H. Machine learning method for simulation of adsorption separation: Comparisons of model’s performance in predicting equilibrium concentrations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
|
22
|
Nasrollahzadeh M, Motahharifar N, Sajjadi M, Naserimanesh A, Shokouhimehr M. Functionalization of chitosan by grafting Cu(II)-5-amino-1H-tetrazole complex as a magnetically recyclable catalyst for C-N coupling reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Bakhshi A, Saravani H, Rezvani A, Sargazi G, Shahbakhsh M. A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Menazea AA, Awwad NS, Ibrahium HA, Ebaid G, Elhosiny Ali H. Selective detection of sulfur trioxide in the presence of environmental gases by AlN nanotube. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.2016764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- A. A. Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Ghaffar Ebaid
- Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - H. Elhosiny Ali
- Physics Department, faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
25
|
A theoretical survey on the chlorine dioxide (ClO2) and its decomposed species detection by the AlN nanotube in presence of environmental gases. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C. Design strategies of two-dimensional metal-organic frameworks toward efficient electrocatalysts for N 2 reduction: cooperativity of transition metals and organic linkers. NANOSCALE 2021; 13:19247-19254. [PMID: 34787144 DOI: 10.1039/d1nr06366a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) serve as emerging electrocatalysts due to their high conductivity, chemical tunability, and accessibility of active sites. We herein proposed a series of 2D MOFs with different metal atoms and organic linkers with the formula M3C12X12 (M = Cr, Mo, and W; X = NH, O, S, and Se) to design efficient nitrogen reduction reaction (NRR) electrocatalysts. Our theoretical calculations showed that metal atoms in M3C12X12 can efficiently capture and activate N2 molecules. Among these candidates, W3C12X12 (X = O, S, and Se) show the best NRR performance due to their high activity and selectivity as well as low limiting potential (-0.59 V, -0.14 V, and -0.01 V, respectively). Moreover, we proposed a d-band center descriptor strategy to screen out the high activity and selectivity of M3C12X12 for the NRR. Therefore, our work not only demonstrates a class of promising electrocatalysts for the NRR but also provides a strategy for further predicting the catalytic activity of 2D MOFs.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Weixing Chen
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ling Fu
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China
| | - Chenxu Zhao
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Jinrong Huo
- School of Sciences, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Faculty of Science Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia
| |
Collapse
|
27
|
Zhao C, Xi M, Huo J, He C. B-Doped 2D-InSe as a bifunctional catalyst for CO 2/CH 4 separation under the regulation of an external electric field. Phys Chem Chem Phys 2021; 23:23219-23224. [PMID: 34622904 DOI: 10.1039/d1cp03943a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The separation of CO2 or CH4 from a CO2/CH4 mixture has drawn great attention in relation to solving air pollution and energy shortage issues. However, research into using bifunctional catalysts to separate CO2 and CH4 under different conditions is absent. We have herein designed a novel B-doped two-dimensional InSe (B@2DInSe) catalyst, which can chemically adsorb CO2 with covalent bonds. B@2DInSe can separate CO2 and CH4 in different electric fields, which originates from different regulation mechanisms by an electric field (EF) on the electric properties. The hybridization states between CO2 and B@2DInSe near the Fermi level have experienced gradual localization and eventually merged into a single narrow peak under an increased EF. As the EF further increased, the merged peak shifted towards higher energy states around the Fermi level. In contrast, the EF mainly alters the degree of hybridization between CH4 and B@2DInSe at states far below the Fermi level, which is different from the CO2 situation. These characteristics can also lead to perfect linear relationships between the adsorption energies of CO2/CH4 and the electric field, which may be beneficial for the prediction of the required EF without large volumes of calculations. Our results have not only provided novel clues for catalyst design, but they have also provided deep understanding into the mechanisms of bifunctional catalysts.
Collapse
Affiliation(s)
- Chenxu Zhao
- Institute of Environment and Energy Catalysis, School of Materials Science and Chemical Engineering Xi'an Technological University Xi'an, Shaanxi 710021, China.
| | - Menghui Xi
- Institute of Environment and Energy Catalysis, School of Materials Science and Chemical Engineering Xi'an Technological University Xi'an, Shaanxi 710021, China.
| | - Jinrong Huo
- Institute of Environment and Energy Catalysis, School of Materials Science and Chemical Engineering Xi'an Technological University Xi'an, Shaanxi 710021, China.
| | - Chaozheng He
- Institute of Environment and Energy Catalysis, School of Materials Science and Chemical Engineering Xi'an Technological University Xi'an, Shaanxi 710021, China.
| |
Collapse
|