1
|
Ke C, Tian Q, Zhai Q, Dai Q, Xu L, Wei Y, Liu S. Electrochemical alkylation of C(sp 2)-H bonds via halogen-atom transfer (XAT) from alkyl iodides. Org Biomol Chem 2025; 23:3336-3341. [PMID: 40105261 DOI: 10.1039/d5ob00149h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Here, we present an electrochemical C(sp2)-H bond alkylation of unactivated alkyl iodides via a halogen-atom transfer (XAT) process under mild conditions. This strategy avoids the drawbacks associated with sacrificing reactive metal anodes in electrochemical direct reduction and demonstrates excellent functional group tolerance.
Collapse
Affiliation(s)
- Changqiong Ke
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Qing Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Qianqian Zhai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Qirui Dai
- School of Energy and Materials/Institute of Bingtuan Energy Development Research, Shihezi University, Shihezi, 832003, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Shuai Liu
- School of Energy and Materials/Institute of Bingtuan Energy Development Research, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Tran HV, Dang TT, Nguyen NH, Tran HT, Nguyen DT, Do DV, Le TS, Ngo TH, Late YKE, Amaniampong PN, Fletcher E, Hung TQ, Cheng Y, Nguyen TK, Tran TS, Zhang J, An H, Nguyen NT, Trinh QT. Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis. CHEMSUSCHEM 2025; 18:e202401974. [PMID: 39555972 DOI: 10.1002/cssc.202401974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.
Collapse
Affiliation(s)
- Hung-Vu Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300 A Nguyen Tat Thanh St., District 4, Ho Chi Minh City, 7280, Viet Nam
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Nguyen Hoang Nguyen
- Energy and Environmental Technology Division, Vietnam - Korea Institute of Science and Technology, Hoa Lac High-Tech Park, Hanoi, Viet Nam
| | - Huyen Thu Tran
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5 A 0 A7, Canada
| | - Dung Tien Nguyen
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Dang Van Do
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thuong Hanh Ngo
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Yawa K E Late
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Prince Nana Amaniampong
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Eugene Fletcher
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Tran Quang Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Yuran Cheng
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan Sang Tran
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
3
|
Zhong Q, Wang PL, Gao H, Liu F, Li H. Manganaelectro-Catalyzed Cyclization of o-Aminoarylketones with Ammonia: An Approach to 1,2-Dihydroquinazolines. J Org Chem 2024; 89:13253-13262. [PMID: 39264296 DOI: 10.1021/acs.joc.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A manganaelectro-catalyzed cyclization reaction of 2-aminoarylketones with simple alcohols and ammonia under mild conditions is reported for the first time. The cooperative catalysis effectively enhances the oxidation of primary alcohols into aldehydes, thus enabling the synthesis of substituted 1,2-dihydroquinazolines in good to excellent yields. In addition, the utilities of this method are highlighted in the construction of biologically active molecules that would otherwise be difficult to access through a traditional method.
Collapse
Affiliation(s)
- Qiang Zhong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fanghua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
4
|
Huang J, Li X, Liu P, Wei Y, Liu S, Ma X. Selective Oxidative Cleavage of Benzyl C-N Bond under Metal-Free Electrochemical Conditions. Molecules 2024; 29:2851. [PMID: 38930916 PMCID: PMC11206264 DOI: 10.3390/molecules29122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
With the growing significance of green chemistry in organic synthesis, electrochemical oxidation has seen rapid development. Compounds undergo oxidation-reduction reactions through electron transfer at the electrode surface. This article proposes the use of electrochemical methods to achieve cleavage of the benzyl C-N bond. This method selectively oxidatively cleaves the C-N bond without the need for metal catalysts or external oxidants. Additionally, primary, secondary, and tertiary amines exhibit good adaptability under these conditions, utilizing water as the sole source of oxygen.
Collapse
Affiliation(s)
- Jiawei Huang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Xiaoman Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Yu Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Shuai Liu
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832003, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| |
Collapse
|
5
|
Xiao W, Wang J, Ye J, Wang H, Wu J, Ye S. Electrochemical Synthesis of Spirolactones from α-Tetralone Derivatives with Methanol as a C1 Source. Org Lett 2024; 26:5016-5020. [PMID: 38825794 DOI: 10.1021/acs.orglett.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spirolactones are widely found in pharmaceuticals and bioactive natural products. However, efficient and environmentally friendly approaches to accessing spirolactones are still highly desirable. Herein, a novel electrochemical synthesis of spirolactones from α-tetralone derivatives with methanol as a C1 source is described. This electrochemical reaction exhibits a high efficiency and good functional group tolerance.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jiamin Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Hongyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
6
|
Xue M, Pan T, Shao Z, Wang W, Li H, Zhao L, Zhou X, Zhang Y. Sustainable Electrochemical Benzylic C-H Oxidation Using MeOH as an Oxygen Source. CHEMSUSCHEM 2024; 17:e202400028. [PMID: 38225209 DOI: 10.1002/cssc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
New methods and strategies for the direct oxidation of benzylic C-H bonds are highly desirable, owing to the importance of ketone motifs in significant organic transformations and the synthesis of valuable molecules, including pharmaceuticals, pesticides, and fine chemicals. Herein, we describe an electrochemical benzylic C-H oxidation strategy for the synthesis of ketones using MeOH as an oxygen source. Inexpensive and safe KBr serves as both an electrolyte and a bromide radical precursor in the reaction. This transformation also offers several advantages such as mild conditions, broad functional group tolerance, and operational simplicity. Mechanistic investigations by control experiments, radical scavenging experiments, electron paramagnetic resonance (EPR), kinetic studies, cyclic voltammetry (CV), and in-situ Fourier transform infrared (FTIR) spectroscopy support a pathway involving the formation and transformation of benzyl methyl ether via hydrogen atom transfer (HAT) and single-electron transfer (SET). The practical application of our strategy is highlighted by the successful synthesis of five pharmaceuticals, namely lenperone, melperone, diphenhydramine, cinnarizine, and flunarizine.
Collapse
Affiliation(s)
- Meng Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Pan
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhichao Shao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Wenxuan Wang
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Lixing Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
7
|
Zhang Z, Meng XJ, Cui FH, Tang HT, Wang YC, Huang GB, Pan YM. Electrochemically Promoted Three-Component Reaction to N-Sulfonyl Amidines. Org Lett 2024; 26:193-197. [PMID: 38147844 DOI: 10.1021/acs.orglett.3c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, a multicomponent reaction via the Mannich intermediate was developed using methanol, secondary amine, and sulfonamide as starting materials. This method uses methanol as a green C1 source. The substrate scope is wide, and the yield is good. The mechanistic study shows that methanol generates formaldehyde under electrochemical conditions, and sulfonyl amidine as a nucleophile reacts with Schiff base intermediates to form N-sulfonyl amidine in a single step.
Collapse
Affiliation(s)
- Zhang Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Xiu-Jin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fei-Hu Cui
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Guo-Bao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
8
|
Al-Qargholi B, Al-Dolaimy F, Altalbawy FMA, Kadhim AJ, Alsaalamy AH, Suliman M, Abbas AHR. Surface modification of a screen-printed electrode with a flower-like nanostructure to fabricate a guanine DNA-based electrochemical biosensor to determine the anticancer drug pemigatinib. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5146-5156. [PMID: 37753580 DOI: 10.1039/d3ay01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:β-MnO2 nanostructures (3D CF-L Eu3+:β-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 μM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:β-MnO2 NSs/SPE for analyzing pemigatinib in real samples.
Collapse
Affiliation(s)
- Basim Al-Qargholi
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001 Hilla, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abed J Kadhim
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hussien R Abbas
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Iraq
| |
Collapse
|
9
|
Li H, Li C, Liu W, Yao Y, Li Y, Zhang B, Qiu C. Photo-Induced C 1 Substitution Using Methanol as a C 1 Source. CHEMSUSCHEM 2023; 16:e202300377. [PMID: 37140478 DOI: 10.1002/cssc.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The development of sustainable and efficient C1 substitution methods is of central interest for organic synthesis and pharmaceuticals production, the methylation motifs bound to a carbon, nitrogen, or oxygen atom widely exist in natural products and top-selling drugs. In the past decades, a number of methods involving green and inexpensive methanol have already been disclosed to replace industrial hazardous and waste-generating C1 source. Among the various efforts, photochemical strategy is considered as a "renewable" alternative that shows great potential to selectively activate methanol to achieve a series of C1 substitutions at mild conditions, typically C/N-methylation, methoxylation, hydroxymethylation, and formylation. Herein the recent advances in selective transformation of methanol to various C1 functional groups via well-designed photochemical systems involving different types of catalysts or not is systematically reviewed. Both the mechanism and corresponding photocatalytic system were discussed and classified on specific methanol activation models. Finally, the major challenges and perspectives are proposed.
Collapse
Affiliation(s)
- Hongmei Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
| | - Chao Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yanling Yao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Bing Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
10
|
Fan Y, Ou W, Chen M, Liu Y, Zhang B, Ruan W, Su C. Metal-Free Electrochemically Reductive Deuteration of C═N Bonds with D 2O toward Deuterated Amines. Org Lett 2023; 25:432-437. [PMID: 36607227 DOI: 10.1021/acs.orglett.2c04154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmentally friendly and highly efficient synthesis of α-deuterated amines is achieved via a concise electrochemical process using D2O as deuterium source without any external reductants or catalysts. Various imines are compatible, affording the desired products in high yields and D-incorporation. Gram-scale synthesis and flow-cell electrochemistry technology are used to synthesize deuterated pharmaceutical amines and their intermediates. Mechanistic studies reveal a plausible process, including the formation of carbanion species followed by deuterium atom transfer.
Collapse
Affiliation(s)
- Yang Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mengyin Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yubing Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenqing Ruan
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
11
|
Li Y, Xu L, Wei Y. Synthesis of acridines via copper-catalyzed amination/annulation cascades between arylboronic acids and anthranils. Org Biomol Chem 2022; 20:9742-9745. [PMID: 36441231 DOI: 10.1039/d2ob01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copper-catalyzed tandem cyclization reactions between arylboronic acids and anthranils have been established, providing new approaches for one-pot assembly of azacycle acridines. This one-pot protocol features simple operation, precious-metal-free conditions and good functional group compatibility, thus providing an efficient approach for the synthesis of a variety of acridines in moderate to good yields.
Collapse
Affiliation(s)
- Yuge Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
12
|
Phakdeeyothin K, Viriyanukul T, Udomsasporn K, Phomphrai K, Yotphan S. Metal‐Free Aminomethylation of Pyrazolones: Direct Access to 4‐Aminomethylated Pyrazolones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Tarm Viriyanukul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kwanchanok Udomsasporn
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| |
Collapse
|
13
|
Ji XS, Zuo HD, Shen YT, Hao WJ, Tu SJ, Jiang B. Electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes. Chem Commun (Camb) 2022; 58:10420-10423. [PMID: 36043317 DOI: 10.1039/d2cc03922b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes with disulfonimides and alcohols is reported, producing a series of functionalized benzofurans under catalyst- and oxidant-free conditions. The annulative aminoketalization proceeds with simple short-chain alcohols such as methanol, ethanol and n-propanol as O-nucleophilic reagents, while the reaction occurs in the annulative aminooxygenation direction in the presence of water and large steric sec-butyl alcohol (SBA).
Collapse
Affiliation(s)
- Xiao-Shuang Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China. .,School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
14
|
Li Y, Cao Z, Wang Z, Xu L, Wei Y. Copper-Catalyzed Reactions of Alkenyl Boronic Esters via Chan-Evans-Lam Coupling/Annulation Cascades: Substrate Selective Synthesis of Dihydroquinazolin-4-ones and Polysubstituted Quinolines. Org Lett 2022; 24:6554-6559. [PMID: 36036773 DOI: 10.1021/acs.orglett.2c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper-catalyzed cascade cyclization reactions between alkenyl boronic esters and N-H-based nucleophiles have been established, providing new approaches for one-pot assembly of azacycles. Following the Chan-Evans-Lam C-N couplings, the cyclization processes occur via divergent pathways based on the utilized substrates, affording hydroamination product dihydroquinazolin-4-ones or aromatization product quinolines. Via this one-pot C-N coupling/annulation cascade, the target substituted azacycles can be obtained in moderate to good yields in each case.
Collapse
Affiliation(s)
- Yuge Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| | - Zifeng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
15
|
Qian WF, Zhong B, He JY, Zhu C, Xu H. Sustainable Electrochemical C(sp3−H Oxygenation Using Water as the Oxygen Source. Bioorg Med Chem 2022; 72:116965. [DOI: 10.1016/j.bmc.2022.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
|
16
|
DMSO as C1 source under metal‐and oxidant‐free conditions: NH4SCN mediated synthesis of quinazolinone and dihydroquinazolin‐4(1H)‐one derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Liu S, Lu Y, Sun S, Wang H, Gao W, Wang Y, Jia X, Chen J. Electrode material promoted dehydrogenative homo-/cross-coupling of weakly activated naphthalenes. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|