1
|
Parra LMH, Laucirica G, Toimil-Molares ME, Marmisollé W, Azzaroni O. Sensing creatinine in urine via the iontronic response of enzymatic single solid-state nanochannels. Biosens Bioelectron 2025; 268:116893. [PMID: 39522469 DOI: 10.1016/j.bios.2024.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigate the integration of the enzyme creatinine deiminase into solid-state nanopore walls through electrostatic assembly for the development of creatinine sensors. In these asymmetric single nanochannels, ionic transport is determined by the surface charge inside the channel, resulting in diode-like behavior that rectifies ionic current. The efficiency of such rectification depends on the surface charge density. In the presence of creatinine, the enzymatic reaction generates ammonium, leading to an increase in local pH near the channel, which can be detected through changes in transmembrane ionic transport response. Changes in rectification efficiency can be well correlated with the analyte concentration, allowing for a detection limit of 5 nM creatinine. Furthermore, this solid-state nanopore-based device is capable of sensing in diluted urine samples, showing a good linear correlation between the response and the logarithm of the creatinine concentration over a wide range of concentrations (50 nM-100 μM). These results demonstrate the potential of systems based on the integration of enzymes that induce pH changes and solid-state nanopores for the development of biomarker sensors capable of operating in complex real samples.
Collapse
Affiliation(s)
- L Miguel Hernández Parra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - María Eugenia Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany; Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina.
| |
Collapse
|
2
|
Zhang K, Wu H, Zhang X, Dong H, Chen S, Xu Y, Xu F. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport. Int J Biol Macromol 2024; 260:129461. [PMID: 38237827 DOI: 10.1016/j.ijbiomac.2024.129461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
How to optimize ion-exchange membrane materials has been the key for researchers recently working on the use of reverse electrodialysis to harvest osmotic energy. Based on the considerations of improving membrane performance and conversion to large-area industrial production, this work first proposes an easy-industrialized strategy to treat bacterial cellulose membranes by hot pressing and hot pressing with etherification modification, and then to obtain anion-selective and cation-selective membrane pairs (PBC-M and NBC-M) with opposite charges. The PBC-M obtained by multi-step treatment has excellent hydrophobicity, good surface charge density, and more favorable nanochannel size for the functioning of double layer. The maximum output power density of 44.1 mW m-2 was obtained in artificial river water and seawater simulated salinity gradient power generation. Applied to a larger test area, the power output of the system where a single membrane is located can reach 2.2 × 10-3 mW, which is ahead of similar experimental products. The two membranes prepared can also be used in combination, which provides a new idea for full cell design. It's important to open up a new route for optimizing nanofluidic channel design, regulating ion flux transport, and advancing the large-scale industrialization of biomass nanofluidic membrane RED system.
Collapse
Affiliation(s)
- Kejian Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Hongqin Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Xiao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Huilin Dong
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Shen Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
3
|
Zhang X, Huang H, Chen S, Xu Y, Xu F. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Int J Biol Macromol 2024; 258:128984. [PMID: 38151089 DOI: 10.1016/j.ijbiomac.2023.128984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The massive reserves of osmotic energy existing in estuary will be highly desired as promising energy source that avails to solve the problem of energy shortage and environment deterioration. The ion transport membrane is core component optimized through composite membrane heterostructure to maximize the osmotic energy harvesting but suffer from gaps and resistance increase, which limit their practical applications. Here we demonstrate mono-component heterogeneous regenerated bacterial cellulose (RBC) membranes fabricated by subtle regenerated technique through Ionic Liquids (ILs). Such membranes obtain heterogeneous nature by the difference in fiber intertwining states due to the different treatment conditions on both sides. It achieves osmotic energy conversion with maximum power density of 0.70 W·m-2at 100-fold, which provides ingenious strategy for excellent performance and low-cost osmotic energy harvesting. By minimizing pores and maximizing the surface charges, energy barriers can be lowered, ion permeable and selective transport channels for energy harvesting device can be increased, as supported by the numerical simulation. This is the first time the construction strategy for mono-component heterogeneous membrane mediated by ILs for osmotic energy harvesting is proposed, which averts gaps between the layers of different materials effectively and provides theoretical guidance for subsequent in-depth research on mono-component ion-selective heterogeneous membrane.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Haocun Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Liu C, Ye C, Zhang T, Tang J, Mao K, Chen L, Xue L, Sun J, Zhang W, Wang X, Xiong P, Wang G, Zhu J. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti 0.87 O 2 Nanosheet Membranes for Ultrahigh-performance Osmotic Power Generation. Angew Chem Int Ed Engl 2024; 63:e202315947. [PMID: 38059770 DOI: 10.1002/anie.202315947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tianning Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiheng Tang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kunpeng Mao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Long Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenqing Zhang
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Wang X, Yang H, Yu Z, Zhang Z, Chen Y. Two-Dimensional Graphene-Based Potassium Channels Built at an Oil/Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5393. [PMID: 37570097 PMCID: PMC10419551 DOI: 10.3390/ma16155393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Graphene-based laminar membranes exhibit remarkable ion sieving properties, but their monovalent ion selectivity is still low and much less than the natural ion channels. Inspired by the elementary structure/function relationships of biological ion channels embedded in biomembranes, a new strategy is proposed herein to mimic biological K+ channels by using the graphene laminar membrane (GLM) composed of two-dimensional (2D) angstrom(Å)-scale channels to support a simple model of semi-biomembrane, namely oil/water (O/W) interface. It is found that K+ is strongly preferred over Na+ and Li+ for transferring across the GLM-supported water/1,2-dichloroethane (W/DCE) interface within the same potential window (-0.1-0.6 V), although the monovalent ion selectivity of GLM under the aqueous solution is still low (K+/Na+~1.11 and K+/Li+~1.35). Moreover, the voltammetric responses corresponding to the ion transfer of NH4+ observed at the GLM-supported W/DCE interface also show that NH4+ can often pass through the biological K+ channels due to their comparable hydration-free energies and cation-π interactions. The underlying mechanism of as-observed K+ selective voltammetric responses is discussed and found to be consistent with the energy balance of cationic partial-dehydration (energetic costs) and cation-π interaction (energetic gains) as involved in biological K+ channels.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | | | | | | | - Yong Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
6
|
Fan L. Mechanical Mechanism of Ion and Water Molecular Transport through Angstrom-Scale Graphene Derivatives Channels: From Atomic Model to Solid-Liquid Interaction. Int J Mol Sci 2023; 24:10001. [PMID: 37373149 DOI: 10.3390/ijms241210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Ion and water transport at the Angstrom/Nano scale has always been one of the focuses of experimental and theoretical research. In particular, the surface properties of the angstrom channel and the solid-liquid interface interaction will play a decisive role in ion and water transport when the channel size is small to molecular or angstrom level. In this paper, the chemical structure and theoretical model of graphene oxide (GO) are reviewed. Moreover, the mechanical mechanism of water molecules and ions transport through the angstrom channel of GO are discussed, including the mechanism of intermolecular force at a solid/liquid/ion interface, the charge asymmetry effect and the dehydration effect. Angstrom channels, which are precisely constructed by two-dimensional (2D) materials such as GO, provide a new platform and idea for angstrom-scale transport. It provides an important reference for the understanding and cognition of fluid transport mechanism at angstrom-scale and its application in filtration, screening, seawater desalination, gas separation and so on.
Collapse
Affiliation(s)
- Lei Fan
- School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, China
| |
Collapse
|
7
|
Liu F, Yang H, Feng X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with "Brick-and-Mortar" Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114094. [PMID: 37297231 DOI: 10.3390/ma16114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Inspired by nature, materials scientists have been exploring and designing various biomimetic materials. Among them, composite materials with brick-and-mortar-like structure synthesized from organic and inorganic materials (BMOIs) have attracted increasing attention from scholars. These materials have the advantages of high strength, excellent flame retardancy, and good designability, which can meet the requirements of various fields for materials and have extremely high research value. Despite the increasing interest in and applications of this type of structural material, there is still a dearth of comprehensive reviews, leaving the scientific community with a limited understanding of its properties and applications. In this paper, we review the preparation, interface interaction, and research progress of BMOIs, and propose possible future development directions for this class of materials.
Collapse
Affiliation(s)
- Feng Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. J Colloid Interface Sci 2023; 630:795-803. [DOI: 10.1016/j.jcis.2022.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
|
9
|
Nie Y, Wang L, You X, Wang X, Wu J, Zheng Z. Low dimensional nanomaterials for treating acute kidney injury. J Nanobiotechnology 2022; 20:505. [PMID: 36456976 PMCID: PMC9714216 DOI: 10.1186/s12951-022-01712-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common severe complications among hospitalized patients. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. AKI treatment has received significant attention recently due to the excellent drug delivery capabilities of low-dimensional nanomaterials (LDNs) and their unique therapeutic effects. Diverse LDNs have been proposed to treat AKI, with promising results and the potential for future clinical application. This article aims to provide an overview of the pathogenesis of AKI and the recent advances in the treatment of AKI using different types of LDNs. In addition, it is intended to provide theoretical support for the design of LDNs and implications for AKI treatment.
Collapse
Affiliation(s)
- Yuanpeng Nie
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohua Wang
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|
11
|
Yang X, Zhang K. Direct Wet-Spun Single-Walled Carbon Nanotubes-Based p-n Segmented Filaments toward Wearable Thermoelectric Textiles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44704-44712. [PMID: 36148982 DOI: 10.1021/acsami.2c12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three-dimensional thermoelectric (TE) textiles (TETs) fabricated with TE filaments (TEFs) possess merits over other types such as thickness-direction thermal energy harvesting and excellent conformability with dynamic body curves, revealing the prospect of generating electricity for on-body application. Nonetheless, there is still a lack of a costless but scalable method to automatically and seamlessly produce in-series interconnected p-n segmented TEFs with high TE properties via conventional fiber spinning processes. Here, we developed an alternate wet-spinning strategy to continuously manufacture single-walled carbon nanotube-based p-n segmented TEFs at large scale. The TEF with high electrical conductivity (400-800 S cm-1) displays a low contact resistivity of 189.8 μΩ cm2 between the segments and interelectrode, showing 2 orders of magnitude smaller than that reported in the literature. More importantly, the power factors of p-type and n-type segments are 26.25 and 17.14 μW m-1 K-2, respectively, which are 3 and 4 orders of magnitude higher than those of advanced studies. We finally embroidered it into spacer fabric to fabricate a wearable TET, demonstrating an output power density of 501 nW m-2 at ΔT = 27.7 K. The methodology can inspire the development of fiber-based electronics such as wearable TEs and diodes and so forth.
Collapse
Affiliation(s)
- Xiaona Yang
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Kun Zhang
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|