1
|
Reid J, Ni J, Chen A, Gomes P, Szto A, Yu A, Luo A, Kong B, Adams C, Jeyachandran N, Amir A, Teixeira X, Yuan T, Charretier C. Exploration of alternative microfiltration modalities for the harvest and clarification of diverse recombinant proteins from high-density E. coli culture and lysate using hollow fibre, flat sheet cassette, and vibro membrane filtration technologies. J Ind Microbiol Biotechnol 2024; 52:kuaf008. [PMID: 40185688 PMCID: PMC12022607 DOI: 10.1093/jimb/kuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Industrial bioprocess optimization has significantly increased the productivity of biomass and biologics in upstream production. Such process improvement in fermentation often translates to challenges in recovering intracellularly expressed recombinant proteins due to increased matrix complexity, resulting in a higher performance burden in midstream. Tangential flow filtration (TFF) is a popular industry standard for buffer exchange and protein separation from cellular debris. However, due to variations in the physicochemical properties of recombinant proteins, solutions for E. coli-based protein clarification remain challenging and often necessitate extensive exploration and process optimization. With growing options in filtration-based technologies, the identification of a near-universal clarification platform is desirable to accelerate bioprocess development overall. In this study, three TFF modalities, hollow fibre (HF), flat-sheet cassette (CAS), and vibro membrane filtration (VMF), were assessed in parallel to evaluate their clarification performance for three E. coli recombinant proteins with different biochemical properties. Reverse phase liquid chromatography data showed target protein recovery was uniformly higher for VMF than HF at equivalent loading. Cell density and lysate protein load were comparable for HF and VMF, and lower for CAS. These results support the choice of VMF and HF as easily optimized and operated TFF modalities for clarification of recombinant protein from complex crude bacterial matrix, where either can be efficiently performed with ease and minimum supervision. Both TFF applications were successfully demonstrated in primary cell harvest, cell wash and cell lysate clarification, for E. coli-based recombinant proteins. ONE-SENTENCE SUMMARY High-density E. coli microfiltration and lysate clarification were tested for three diverse recombinant proteins, where hollow fibre and vibro membrane filtration outperformed flat sheet cassette in terms of process time, suspended solid loading, and target protein recovery.
Collapse
Affiliation(s)
- Jennifer Reid
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Joyce Ni
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Airong Chen
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Patricia Gomes
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Andrew Szto
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Analyn Yu
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Angela Luo
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Belinda Kong
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Calvin Adams
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Neveathan Jeyachandran
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Anumta Amir
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Xavier Teixeira
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Marcy-l'Étoile, 69280, France
| | - Tao Yuan
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Toronto M2R 3T4 ON, Canada
| | - Cédric Charretier
- Global Bioprocess Development - Drug Substance Development, Sanofi Vaccines, Marcy-l'Étoile, 69280, France
| |
Collapse
|
2
|
Luo Y, Qiu R, Zhang X, Li F. Biofouling behaviors of reverse osmosis membrane in the presence of trace plasticizer for circulating cooling water treatment: Characteristics and mechanisms. WATER RESEARCH 2024; 260:121937. [PMID: 38878313 DOI: 10.1016/j.watres.2024.121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Reverse osmosis (RO) system has been increasingly applied for circulating cooling water (CCW) reclamation. Plasticizers, which may be dissolved into CCW system in plastic manufacturing industry, cannot be completely removed by the pretreatment prior to RO system, possibly leading to severe membrane biofouling. Deciphering the characteristics and mechanisms of RO membrane biofouling in the presence of trace plasticizers are of paramount importance to the development of effective fouling control strategies. Herein, we demonstrate that exposure to a low concentration (1 - 10 μg/L) of three typical plasticizers (Dibutyl phthalate (DBP), Tributyl phosphate (TBP) and 2,2,4-Trimethylpentane-1,3-diol (TMPD)) detected in pretreated real CCW promoted Escherichia coli biofilm formation. DBP, TBP and TMPD showed the highest stimulation at 5 or 10 μg/L with biomass increasing by 55.7 ± 8.2 %, 35.9 ± 9.5 % and 32.2 ± 14.7 % respectively, relative to the unexposed control. Accordingly, the bacteria upon exposure to trace plasticizers showed enhanced adenosine triphosphate (ATP) activity, stimulated extracellular polymeric substances (EPS) excretion and suppressed intracellular reactive oxygen species (ROS) induction, causing by upregulation of related genes. Long-term study further showed that the RO membranes flowing by the pretreated real CCW in a polypropylene plant exhibited a severer biofouling behavior than exposed control, and DBP and TBP parts played a key role in stimulation effects on bacterial proliferation. Overall, we demonstrate that RO membrane exposure to trace plasticizers in pretreated CCW can upregulate molecular processes and physiologic responses that accelerate membrane biofouling, which provides important implications for biofouling control strategies in membrane-based CCW treatment systems.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Riji Qiu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Qin Q, Yang G, Li J, Sun M, Jia H, Wang J. A review of flow field characteristics in submerged hollow fiber membrane bioreactor: Micro-interface, module and reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121525. [PMID: 38897085 DOI: 10.1016/j.jenvman.2024.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.
Collapse
Affiliation(s)
- Qingwen Qin
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guang Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Juan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China
| | - Min Sun
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
4
|
Wang L, Li Z, Fan J, Han Z. The intelligent prediction of membrane fouling during membrane filtration by mathematical models and artificial intelligence models. CHEMOSPHERE 2024; 349:141031. [PMID: 38145849 DOI: 10.1016/j.chemosphere.2023.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Recently, membrane separation technology has been widely utilized in filtration process intensification due to its efficient performance and unique advantages, but membrane fouling limits its development and application. Therefore, the research on membrane fouling prediction and control technology is crucial to effectively reduce membrane fouling and improve separation performance. This review first introduces the main factors (operating condition, material characteristics, and membrane structure properties) and the corresponding principles that affect membrane fouling. In addition, mathematical models (Hermia model and Tandem resistance model), artificial intelligence (AI) models (Artificial neural networks model and fuzzy control model), and AI optimization methods (genetic algorithm and particle swarm algorithm), which are widely used for the prediction of membrane fouling, are summarized and analyzed for comparison. The AI models are usually significantly better than the mathematical models in terms of prediction accuracy and applicability of membrane fouling and can monitor membrane fouling in real-time by working in concert with image processing technology, which is crucial for membrane fouling prediction and mechanism studies. Meanwhile, AI models for membrane fouling prediction in the separation process have shown good potential and are expected to be further applied in large-scale industrial applications for separation and filtration process intensification. This review will help researchers understand the challenges and future research directions in membrane fouling prediction, which is expected to provide an effective method to reduce or even solve the bottleneck problem of membrane fouling, and to promote the further application of AI modeling in environmental and food fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China; Research Institute, Jilin University, Yibin, 644500, People's Republic of China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, People's Republic of China.
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, 130022, People's Republic of China
| |
Collapse
|
5
|
Wang J, Wang H, Shen L, Li R, Lin H. A sustainable solution for organic pollutant degradation: Novel polyethersulfone/carbon cloth/FeOCl composite membranes with electric field-assisted persulfate activation. WATER RESEARCH 2023; 244:120530. [PMID: 37657317 DOI: 10.1016/j.watres.2023.120530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOP) and ultrafiltration (UF) membranes have demonstrated effectiveness in treating wastewater. This investigation illuminated a pioneering two-stage procedure for fabricating polyethersulfone/carbon cloth/FeOCl (PES/CC/FeOCl) composite catalytic membranes, exhibiting proficiency in persulfate activation. Evidenced by their distinctively high degradation rates and superior stability, these innovative composite membranes efficaciously obviate tetracycline (TC), showcasing a striking TC degradation rate, with an unparalleled removal ratio peaking at 93% under applied electrical fields. The process underlying persulfate activation and TC degradation was meticulously explored through electron paramagnetic resonance (EPR) and quenching trials. These evaluations unveil that hydroxyl radicals (•OH) and sulfate radicals (SO4•-) primarily drive the eradication of diminutive organic molecules. Subsequent studies emphasized the noteworthy rejection ratio of the PES/CC/FeOCl composite membranes (90%) for sodium alginate (SA), further revealing their exceptional on-line cleansing efficiency in an electrofiltration-associated in-situ oxidation system. In essence, this study proposed a novel approach for the synthesis of composite membranes adept at the catalytic degradation of organic pollutants. This paradigm-shifting research imparted a unique lens to perceive the integration of membrane separation technology, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Jing Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
6
|
Application of heat-activated peroxydisulfate process for the chemical cleaning of fouled ultrafiltration membranes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Du X, Li Z, Peng Z, Zhang Z, Xiao M, Wang Z, Yang Y, Li X. A facile green "wastes-treat-wastes" strategy: Electrogenerated chloramines for nanofiltration concentrate recirculation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120465. [PMID: 36273691 DOI: 10.1016/j.envpol.2022.120465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Use of nanofiltration (NF) membrane to reuse the secondary wastewater suffers from severer biofouling and refractory concentrate. To realize sustainable NF membrane processes in water purification, the electro-oxidation (EO) process using boron-doped diamond (BDD) anodes was applied in current study to treat the NF concentrate for removal of organic contaminates and nutrients using simultaneously controllable in-situ generation of chloramines. The electrolytic effluent would be mixed with the raw secondary wastewater as the feed of subsequent NF process for conducting chloramination to mitigate membrane biofouling. It was found that under a constant current density of 30 mA/cm2, the chloramine formed with the electrolysis while its concentration reached the maximum at 30 min of electrolysis when NH3-N was 7 mg/L and Cl- concentration was below 500 mg/L. The complete elimination of antibiotics and bacteria can be attained in the hybrid NF-EO process thanks to the in-situ simultaneous generation of large amount of chloramine. In particular, the membrane biofouling was effectively alleviated to maintain a stable permeate flux during the 160-h period of sustainable operation. Our study provides a promising "wastes-treat-wastes" strategy for sustainable reuse of secondary wastewater.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhitian Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yang Yang
- Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| |
Collapse
|
8
|
Liu J, Tang Z, Yang H, Li X, Yu X, Wang Z, Huang T, Tang CY. Dissecting the role of membrane defects with low-energy barrier on fouling development through A collision Attachment-Monte Carlo approach. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Tan DY, Hashimoto T, Takizawa S. 3D modeling of PVDF membrane aging using scanning electron microscope and OpenCV image analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|