1
|
Wu Z, Yang Q, Cui C, Wu Y, Xie Y, Wang H. Aromatic poly (amino acids) as an effective low-temperature demulsifier for treating crude oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134608. [PMID: 38754229 DOI: 10.1016/j.jhazmat.2024.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Amphiphilic aromatic poly (amino acids) polymers were designed as biodegradability demulsifiers with higher aromaticity, stronger polarity, and side chain-like combs. The effects of demulsifier dosage, structural characteristics and emulsion properties such as pH, salinity, and oil content on the demulsification efficiency were investigated. The results show that the poly (L-glutamic-benzyl ester)-block-poly (L-phenylalanine) (PBLG15-b-PPA15) as the demulsifier can remove more than 99.97% of the oil in a 5.0 wt% oil-in-water (O/W) emulsion at room temperature within 2 min. The poly (L-tyrosine)-block-poly (L-phenylalanine) (PTyr15-b-PPA15) with environmental durability demonstrates high effectiveness, universality, and demulsification speed. It achieves a remarkable demulsification efficiency of up to 99.99% for a 20.0 wt% O/W emulsion at room temperature. The demulsification mechanism indicates that demulsifiers have sufficient interfacial activity can quickly migrate to the oil-water interface after being added to the emulsions. Additionally, when demulsifiers are present in a continuous phase in the molecular form, their "teeth" side chains are beneficial for increasing coalescence and flocculation capacities. Furthermore, according to the Density Functional Theory (DFT) calculations, enhancing the intermolecular interactions between demulsifiers and the primary native surfactants that form an oil-water interfacial film is a more efficient approach to reducing demulsification temperature and improving demulsification efficiency and rate.
Collapse
Affiliation(s)
- Zhuyu Wu
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China
| | - Qiliang Yang
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China
| | - Can Cui
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China
| | - Yiyi Wu
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China.
| | - Yadian Xie
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China
| | - Huanjiang Wang
- School of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
2
|
Chen G, Zhang H, Yuan M, Huang R, Xiao Y, Qu Y, Ren Y. Physiological responses and molecular mechanisms of biofilm formation induced by extracellular metabolites of euglena in Pseudomonas aeruginosa LNR1 for diesel biodegradation based on transcriptomic and proteomic. ENVIRONMENTAL RESEARCH 2024; 248:118273. [PMID: 38280528 DOI: 10.1016/j.envres.2024.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Diesel, as a toxic and complex pollutant, is one of the main components in oily wastewater, and poses serious threats to the aquatic environment and the health of organisms. Employing environmentally friendly biostimulants to enhance the metabolic functions of microorganisms is currently the optimal choice to improve the biodegradation of oil-containing wastewater efficiency. This study takes Pseudomonas aeruginosa LNR1 as the target, analyzing the physiological responses and molecular mechanisms of biofilm formation when enhanced by the extracellular metabolites of euglena (EME) for diesel degradation. The results show that EME not only induces auto-aggregation behavior of strain LNR1, forming aerobic suspended granule biofilm, but also promotes the secretion of signaling molecules in the quorum sensing (QS) system. Transcriptomic and proteomic analyses indicate that the stimulatory effect of EME on strain LNR1 mainly manifests in biofilm formation, substance transmembrane transport, signal transduction, and other biological processes, especially the QS system in signal transduction, which plays a significant regulatory role in biofilm formation, chemotaxis, and two-component system (TCS). This study collectively unveils the molecular mechanisms of biostimulant EME inducing strain LNR1 to enhance diesel degradation from different aspects, providing theoretical guidance for the practical application of EME in oily wastewater pollution control.
Collapse
Affiliation(s)
- Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huiqun Zhang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Huang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
3
|
Liu Y, Liu YY, Zhang X, Jiang WM, Xiong W, Li JJ. Study on the treatment of oily wastewater by evaluating the growth process of aggregates in an electrocoagulation reactor. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104269. [PMID: 38061243 DOI: 10.1016/j.jconhyd.2023.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Electrocoagulation has been widely studied in oily wastewater treatment because of its high demulsification efficiency and no secondary reagent is required. Oil removal largely depends on the properties of the aggregates. This study aimed to explore the growth process of aggregates and oil removal near the anode by electrocoagulation. Four factors, current density, solution temperature, initial pH value, and electrode structure, were investigated. According to the findings, the current density and temperature have the most significant influence on the growth process of aggregates. The oil removal rate depends more on the average particle size than the fractal dimension. The results showed that the current density and solution temperature have the most significant influence on the parameters of the electrocoagulation process. With increasing current density, the aggregate growth rate and average particle size entering the stable period were accelerated, and the oil removal efficiency was promoted. The growth of aggregates was retarded at high temperatures. The change in the scope of the fractal dimension was minor, ranging from 1.65 to 1.84, during the growth process of the aggregates. Foamed aluminium electrodes were beneficial for accelerating aggregate growth instead of aluminium plates, but the energy consumption was obviously increased. The relationship between the mean particle size and mean fractal dimension of aggregates is consistent with the power function. From the point of view of aggregate growth, this study forms the basis for an in-depth understanding of the demulsification mechanism.
Collapse
Affiliation(s)
- Y Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), 66 Changjiang Xi Road, Huangdao District, Qingdao City, Shandong Province.266580, China
| | - Y Y Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), 66 Changjiang Xi Road, Huangdao District, Qingdao City, Shandong Province.266580, China
| | - X Zhang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), 66 Changjiang Xi Road, Huangdao District, Qingdao City, Shandong Province.266580, China
| | - W M Jiang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), 66 Changjiang Xi Road, Huangdao District, Qingdao City, Shandong Province.266580, China.
| | - W Xiong
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), 66 Changjiang Xi Road, Huangdao District, Qingdao City, Shandong Province.266580, China
| | - J J Li
- Drilling and Production Technology Research Institute of Liaohe Oilfield, China
| |
Collapse
|
4
|
Shen Q. Advances in surface properties characterization and modification for lignin. Int J Biol Macromol 2023; 253:126806. [PMID: 37703980 DOI: 10.1016/j.ijbiomac.2023.126806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Renewed interests on lignin and its derivatives have led to increasingly more investigations due to the problems in environmental impact while with the great reuse possibilities for producing them-based new and advanced materials to reduce the petroleum achieving sustainable development. The related studies have shown more integrated database on the surface properties characterization and modification of those renewable materials. Based on numerous works did at our group and others reported elsewhere, this review covers the surface properties of lignin and its derivatives in relation to various methods and theories. In this work, the progress on the recent developments of advanced methods for lignin surface characterization and modification are also documented. Of this review, a perspective is finally presented.
Collapse
Affiliation(s)
- Qing Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymers, Polymer Department of Donghua University, 2999 Renmin Rd., 201600 Songjiang, Shanghai, PR China.
| |
Collapse
|
5
|
Boccia AC, Neagu M, Pulvirenti A. Bio-Based Aerogels for the Removal of Heavy Metal Ions and Oils from Water: Novel Solutions for Environmental Remediation. Gels 2023; 10:32. [PMID: 38247754 PMCID: PMC10815902 DOI: 10.3390/gels10010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of the aqueous environment caused by the presence of heavy metal ions and oils is a growing concern that must be addressed to reduce their detrimental impact on living organisms and safeguard the environment. Recent efficient and environmentally friendly remediation methods for the treatment of water are based on third-generation bioaerogels as emerging applications for the removal of heavy metal ions and oils from aqueous systems. The peculiarities of these materials are various, considering their high specific surface area and low density, together with a highly porous three-dimensional structure and tunable surface chemistry. This review illustrates the recent progress in aerogels developed from cellulose and chitosan as emerging materials in water treatment. The potential of aerogel-based adsorbents for wastewater treatment is reported in terms of adsorption efficacy and reusability. Despite various gaps affecting the manufacturing and production costs of aerogels that actually limit their successful implementation in the market, the research progress suggests that bio-based aerogels are ready to be used in water-treatment applications in the near future.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- National Research Council, (CNR), Istituto di Scienze e Tecnologie Chimiche-SCITEC “G. Natta”, Via A. Corti, 12, 20133 Milano, Italy;
| | - Monica Neagu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Alfio Pulvirenti
- National Research Council, (CNR), Istituto di Scienze e Tecnologie Chimiche-SCITEC “G. Natta”, Via A. Corti, 12, 20133 Milano, Italy;
| |
Collapse
|
6
|
Zhang W, Liu Y, Tao F, An Y, Zhong Y, Liu Z, Hu Z, Zhang X, Wang X. An overview of biomass-based Oil/Water separation materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Shi W, Bai H, Tian Y, Wang X, Li Z, Zhu X, Tian Y, Cao M. Designing Versatile Superhydrophilic Structures via an Alginate-Based Hydrophilic Plasticene. MICROMACHINES 2023; 14:mi14050962. [PMID: 37241586 DOI: 10.3390/mi14050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
The rational design of superhydrophilic materials with a controllable structure is a critical component in various applications, including solar steam generation, liquid spontaneous transport, etc. The arbitrary manipulation of the 2D, 3D, and hierarchical structures of superhydrophilic substrates is highly desirable for smart liquid manipulation in both research and application fields. To design versatile superhydrophilic interfaces with various structures, here we introduce a hydrophilic plasticene that possesses high flexibility, deformability, water absorption, and crosslinking capabilities. Through a pattern-pressing process with a specific template, 2D prior fast spreading of liquids at speeds up to 600 mm/s was achieved on the superhydrophilic surface with designed channels. Additionally, 3D superhydrophilic structures can be facilely designed by combining the hydrophilic plasticene with a 3D-printed template. The assembly of 3D superhydrophilic microstructure arrays were explored, providing a promising route to facilitate the continuous and spontaneous liquid transport. The further modification of superhydrophilic 3D structures with pyrrole can promote the applications of solar steam generation. The optimal evaporation rate of an as-prepared superhydrophilic evaporator reached ~1.60 kg·m-2·h-1 with a conversion efficiency of approximately 92.96%. Overall, we envision that the hydrophilic plasticene should satisfy a wide range of requirements for superhydrophilic structures and update our understanding of superhydrophilic materials in both fabrication and application.
Collapse
Affiliation(s)
- Wenbo Shi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyu Bai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yaru Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhe Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xuanbo Zhu
- National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Li Z, Li D, Zhong L, Li X, Liu C, Peng X. Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Wang H, Liu Z, Cui D, Liu Y, Yang L, Chen H, Qiu G, Geng Y, Xiong Z, Shao P, Luo X. A pilot scale study on the treatment of rare earth tailings (REEs) wastewater with low C/N ratio using microalgae photobioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116973. [PMID: 36525735 DOI: 10.1016/j.jenvman.2022.116973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Microalgae appear to be a promising and ecologically safe way for nutrients removal from rare earth tailings (REEs) wastewater with CO2 fixation and added benefits of resource recovery and recycling. In this study, a pilot scale (50 L) co-flocculating microalgae photobioreactor (Ma-PBR) as constructed and operated for 140 days to treat REEs wastewater with low C/N ratio of 0.51-0.56. The removal rate of ammonia nitrogen (NH4+-N) reached 88.04% and the effluent residual concentration was as low as 9.91 mg/L that have met the Emission Standards of Pollutants from Rare Earths Industry (GB 26451-2011). Timely supplementation of trace elements was necessary to maintain the activity of microalgae and then prolonged the operation time. The dominant phyla in co-flocculating microalgae was Chlorophyta, the relative abundance of which was higher than 80%. Tetradesmus belonging to Chlorophyceae was the dominant genus with relative abundance of 80.35%. The results provided a practical support for the scaling-up of Ma-PBR to treat REEs wastewater.
Collapse
Affiliation(s)
- Haiyu Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | | | - Genping Qiu
- Eco-advance co., led, Jiangxi, 341000, PR China
| | - Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
10
|
Photocatalytic Cr(VI) reduction over MIL-88A(Fe) on polyurethane sponge: From batch to continuous-flow operation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
12
|
Mao L, Huang J, Mao H, Xu M, Zhang W. Self-floating capsule of algicidal bacteria Bacillus sp. HL and its performance in the dissolution of Microcystis aeruginosa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115837. [PMID: 35933879 DOI: 10.1016/j.jenvman.2022.115837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Algicidal bacteria is considered as an efficient and environmentally friendly approach to suppress Microcystis aeruginosa (M. aeruginosa). However, algicidal bacteria in natural water is limited during the practical application due to the interference of external factors and the low reuse capability. In this study, a bio-degradation capsule for M. aeruginosa is prepared by bio-compatible sodium alginate (SA) compositing with eco-friendly ethyl cellulose (EC) to improve the property and reuse capability of algicidal bacteria. Bacterial strain HL was well immobilized and the capsule was obtained with 2% of SA, 3% of calcium chloride (CaCl2) and 3% of EC. It has been proved that capsules immobilizing bacteria HL shows considerable advantage over traditional bio-treatment systems (free-living bacteria) and good reusable performance. A better algicidal rate of 77.67% ± 1.14% at 7th day was obtained with the use of capsule embedding 50 mL of algicidal bacteria, enhanced by 11.05% comparing with same amount of free-living bacteria. Moreover, the algicidal rate of M. aeruginosa still reached 68.57% ± 2.88% after three times repetitive use. The effect of capsules on the fluorescence and antioxidant system of M. aeruginosa indicated that the photosystems were irreversibly damaged and the antioxidant response of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly induced. Overall, capsules prepared in this study can provide a desirable environment for algicidal bacteria HL and ensure algicidal bacteria to in-situ work well in inhibiting booms of algae.
Collapse
Affiliation(s)
- Linqiang Mao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu Province, 213164, China.
| | - Jinjie Huang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu Province, 213164, China
| | - Hongyan Mao
- Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province, 261061, China
| | - Mingchen Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu Province, 213164, China
| | - Wenyi Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu Province, 213164, China.
| |
Collapse
|