1
|
Duan Z, Zhou W, He S, Wang W, Huang H, Yi L, Zhang R, Chen J, Zan X, You C, Gao X. Intranasal Delivery of Curcumin Nanoparticles Improves Neuroinflammation and Neurological Deficits in Mice with Intracerebral Hemorrhage. SMALL METHODS 2024; 8:e2400304. [PMID: 38577823 DOI: 10.1002/smtd.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.
Collapse
Affiliation(s)
- Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Hongyi Huang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Chao You
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Cozzani M, Ferrari PF, Damonte G, Pellis A, Monticelli O. On the Development of Polylactic Acid/Polycaprolactone Blended Films with High Retention Capacity. Macromol Biosci 2024; 24:e2400272. [PMID: 39155238 DOI: 10.1002/mabi.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The retention capacity of polymers is related to the development of systems that combine high surface-to-volume ratio with good handling and specific functionality. Biodegradability and biocompatibility are also key features for extending the field of applications to areas such as biomedicine. With this in mind, the aim of this work is to develop biodegradable, biocompatible, and highly functionalized porous films, that ensure suitable handling and a good surface-to-volume ratio. Polylactic acid (PLA) is applied as a polymer matrix to which a polycaprolactone with a star-shaped architecture (PCL-COOH) to ensure a high concentration of carboxylic end functionalities is added. The porous films are prepared using the phase inversion technique, which, as shown by Scanning Electron Microscopy (SEM) analysis, promotes good dispersion of the PCL-COOH domains. Absorption and release measurements performed with a positively charged model molecule show that the retention capacity and release rate can be tuned by changing the PCL-COOH concentration in the systems. Moreover, the adsorption properties for the formulation with the highest PCL-COOH content are also demonstrated with a real and widely used drug, namely doxorubicin. Finally, the bio- and hemocompatibility of the films, which are enzymatically degradable, are evaluated by using human keratinocytes and red blood cells, respectively.
Collapse
Affiliation(s)
- Martina Cozzani
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, Genoa, 16145, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, Genoa, 16145, Italy
- IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, Genoa, 16132, Italy
| | - Giacomo Damonte
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Alessandro Pellis
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| | - Orietta Monticelli
- Dipartimento di Chimica e Chimica Industriale, Università degli studi di Genova, via Dodecaneso 31, Genoa, 16146, Italy
| |
Collapse
|
3
|
Zhang S, Zhang Y, Wang W, Hu Y, Chen X, Wang B, Gao X. A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. CHINESE CHEM LETT 2024; 35:109658. [DOI: 10.1016/j.cclet.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liang J, Liang Y, Yan F, Zhang M, Wu W. Novel targeting liposomes with enhanced endosomal escape for co-delivery of doxorubicin and curcumin. Colloids Surf B Biointerfaces 2024; 245:114267. [PMID: 39326226 DOI: 10.1016/j.colsurfb.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Effective endosomal escape is crucial for enhancing the efficiency of nanodrug delivery systems. In this study, we developed a novel liposomal system utilizing acid-sensitive N-(3-amino-propyl) imidazole cholesterol (IM-Chol), specifically designed for the targeted co-delivery of doxorubicin (DOX) and curcumin (CUR) to hepatocellular carcinoma (HCC). Designated as GA-IM-LIP@DOX/CUR, this liposomal system incorporates glycyrrhetinic acid (GA) to improve target specificity toward HCC cells. Notably, both drugs exhibited pH-sensitive release profiles, facilitating precise drug release within acidic environments. Our investigation into cellular uptake demonstrated that modified liposomes, GA-IM-LIP@FITC and IM-LIP@FITC, achieved progressively enhanced intracellular accumulation of FITC compared to unmodified liposomes. Competitive inhibition assays utilizing free GA further validated the targeting efficacy of GA. Moreover, the GA-IM-LIP@FITC and IM-LIP@FITC groups exhibited rapid endosomal escape of FITC within the first two hours, in contrast to delayed escape observed in the LIP@FITC group, confirming that the protonation of IM-Chol promotes drug release into the cytosol. In vivo studies substantiated that GA-IM-LIP@DOX/CUR effectively inhibited tumor growth. This research provides significant insights into the design and functionality of the GA-IM-LIP@DOX/CUR liposomal system, underscoring its potential to enhance drug delivery strategies in the treatment of HCC.
Collapse
Affiliation(s)
- Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Fuqing Yan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
5
|
Chueahongthong F, Chiampanichayakul S, Viriyaadhammaa N, Dejkriengkraikul P, Okonogi S, Berkland C, Anuchapreeda S. Cytotoxicity of Doxorubicin-Curcumin Nanoparticles Conjugated with Two Different Peptides (CKR and EVQ) against FLT3 Protein in Leukemic Stem Cells. Polymers (Basel) 2024; 16:2498. [PMID: 39274131 PMCID: PMC11397985 DOI: 10.3390/polym16172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
A targeted micellar formation of doxorubicin (Dox) and curcumin (Cur) was evaluated to enhance the efficacy and reduce the toxicity of these drugs in KG1a leukemic stem cells (LSCs) compared to EoL-1 leukemic cells. Dox-Cur-micelle (DCM) was developed to improve the cell uptake of both compounds in LSCs. Cur-micelle (CM) was produced to compare with DCM. DCM and CM were conjugated with two FLT3 (FMS-like tyrosine kinase)-specific peptides (CKR; C and EVQ; E) to increase drug delivery to KG1a via the FLT3 receptor (AML marker). They were formulated using a film-hydration technique together with a pH-induced self-assembly method. The optimal drug-to-polymer weight ratios for the DCM and CM formulations were 1:40. The weight ratio of Dox and Cur in DCM was 1:9. DCM and CM exhibited a particle size of 20-25 nm with neutral charge and a high %EE. Each micelle exhibited colloidal stability and prolonged drug release. Poloxamer 407 (P407) was modified with terminal azides and conjugated to FLT3-targeting peptides with terminal alkynes. DCM and CM coupled with peptides C, E, and C + E exhibited a higher particle size. Moreover, DCM-C + E and CM-C + E showed the highest toxicity in KG-1a and EoL-1 cells. Using two peptides likely improves the probability of micelles binding to the FLT3 receptor and induces cytotoxicity in leukemic stem cells.
Collapse
Affiliation(s)
- Fah Chueahongthong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natsima Viriyaadhammaa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Cory Berkland
- Department of Biomedical Engineering and Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63105, USA
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Yang X, Ma L, Lu K, Zhao D. Mechanism of Peptide Self-assembly and Its Study in Biomedicine. Protein J 2024; 43:464-476. [PMID: 38676873 DOI: 10.1007/s10930-024-10200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
7
|
Li Y, Cao Y, Ma K, Ma R, Zhang M, Guo Y, Song H, Sun N, Zhang Z, Yang W. A Triple-Responsive Polymeric Prodrug Nanoplatform with Extracellular ROS Consumption and Intracellular H 2O 2 Self-Generation for Imaging-Guided Tumor Chemo-Ferroptosis-Immunotherapy. Adv Healthc Mater 2024; 13:e2303568. [PMID: 38319010 DOI: 10.1002/adhm.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Indexed: 02/07/2024]
Abstract
High reactive oxygen species (ROS) levels in tumor microenvironment (TME) impair both immunogenic cell death (ICD) efficacy and T cell activity. Furthermore, tumor escapes immunosurveillance via programmed death-1/programmed death ligand-1 (PD-L1) signal, and the insufficient intracellular hydrogen peroxide weakens ferroptosis efficacy. To tackle the above issues, a glutathione (GSH)/ROS/pH triple-responsive prodrug nanomedicine that encapsulates Fe2O3 nanoparticle via electrostatic interaction is constructed for magnetic resonance imaging (MRI)-guided multi-mode theranostics with chemotherapy/ferroptosis/immunotherapy. The diselenide bond consumes ROS in TME to increase T cells and ICD efficacy, the cleavage of which facilitates PD-L1 antagonist D peptide release to block immune checkpoint. After intracellular internalization, Fe2O3 nanoparticle is released in the acidic endosome for MRI simultaneously with lipid peroxides generation for tumor ferroptosis. Doxorubicin is cleaved from polymers in the condition of high intracellular GSH level accompanied by tumor ICD, which simultaneously potentiates ferroptosis by NADPH oxidase mediated H2O2 self-generation. In vivo results indicate that the nanoplatform strengthens tumor ICD, induces cytotoxic T lymphocytes proliferation, inhibits 4T1 tumor regression and metastasis, and prolongs survival median. In all, a new strategy is proposed in strengthening ICD and T cells activity cascade with ferroptosis as well as immune checkpoint blockade for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kunru Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673
| | - Nannan Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| |
Collapse
|
8
|
Li Y, Cai Z, Ma W, Bai L, Luo E, Lin Y. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis. Bone Res 2024; 12:14. [PMID: 38424439 PMCID: PMC10904802 DOI: 10.1038/s41413-024-00319-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Zhengwen Cai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Long Bai
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
10
|
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. NANOSCALE 2023; 16:97-109. [PMID: 38087978 DOI: 10.1039/d3nr05195a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Jian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Shi He
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Jiagang Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongzhong Cheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Songping Zheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhiyong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
11
|
Sripetthong S, Nalinbenjapun S, Basit A, Surassmo S, Sajomsang W, Ovatlarnporn C. Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan-Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin. J Funct Biomater 2023; 14:525. [PMID: 37888190 PMCID: PMC10607333 DOI: 10.3390/jfb14100525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Nano-micelles are self-assembling colloidal dispersions applied to enhance the anticancer efficacy of chemotherapeutic agents. In this study, the conjugate of quarternized chitosan and vanillin imine (QCS-Vani imine) was synthesized using the reaction of a Schiff base characterized by proton-NMR (1HNMR), UV-Vis spectroscopy, and FT-IR. The critical micelle concentration (CMC), particle size, and zeta potential of the resulting product were determined. The QCS-Vani imine conjugate was used as a carrier for the development of curcumin-loaded nano-micelles, and their entrapment efficiency (%EE), drug-loading capacity (%LC) and in vitro release were investigated using HPLC analysis. Moreover, the nano-micelles containing curcumin were combined with various concentrations of cisplatin and evaluated for a possible anticancer synergistic effect. The anticancer activity was evaluated against lung cancer A549 and mouse fibroblast L929 cell lines. The percent yield (%) of the QCS-Vani imine conjugate was 93.18%. The curcumin-loaded QCS-Vani imine nano-micelles were characterized and found to have a spherical shape (by TEM) with size < 200 nm (by DLS) with high %EE up to 67.61% and %LC up to 6.15 ± 0.41%. The loaded lyophilized powder of the nano-micelles was more stable at 4 °C than at room temperature during 120 days of storage. pH-sensitive release properties were observed to have a higher curcumin release at pH 5.5 (cancer environment) than at pH 7.4 (systemic environment). Curcumin-loaded QCS-Vani imine nano-micelles showed higher cytotoxicity and selectivity toward lung cancer A549 cell lines and exhibited lower toxicity toward the normal cell (H9C2) than pure curcumin. Moreover, the curcumin-loaded QCS-Vani imine nano-micelles exhibited an enhanced property of inducing cell cycle arrest during the S-phase against A549 cells and showed prominently induced apoptosis in lung cancer cells compared to that with curcumin. The co-treatment of cisplatin with curcumin-loaded QCS-Vani imine nano-micelles presented an enhanced anticancer effect, showing 8.66 ± 0.88 μM as the IC50 value, in comparison to the treatment with cisplatin alone (14.22 ± 1.01 μM). These findings suggest that the developed QCS-Vani imine nano-micelle is a potential drug delivery system and could be a promising approach for treating lung cancer in combination with cisplatin.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Suvimol Surassmo
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand; (S.S.); (W.S.)
| | - Warayuth Sajomsang
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand; (S.S.); (W.S.)
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| |
Collapse
|
12
|
Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. ENVIRONMENTAL RESEARCH 2023; 233:116476. [PMID: 37348632 DOI: 10.1016/j.envres.2023.116476] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, 345050, Dubai, United Arab Emirates
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India; Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | | | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India; Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Shi H, Huai S, Wei H, Xu Y, Lei L, Chen H, Li X, Ma H. Dissolvable hybrid microneedle patch for efficient delivery of curcumin to reduce intraocular inflammation. Int J Pharm 2023; 643:123205. [PMID: 37422141 DOI: 10.1016/j.ijpharm.2023.123205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Intraocular inflammation seriously impairs vision, and the effectiveness of intraocular drug delivery is hampered by various physiological barriers, such as the corneal barrier. In this paper, we present a simple approach to fabricating a dissolvable hybrid microneedles (MNs) patch for the efficient delivery of curcumin to treat intraocular inflammatory disorders. Water-insoluble curcumin was first encapsulated into polymeric micelles with high anti-inflammatory capacities, and then were combined with hyaluronic acid (HA) to create a dissolvable hybrid MNs patch using a simple micromolding method. Curcumin was amorphously dispersed within the MNs patch as indicated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses. According to an in vitro drug release study, the proposed MNs patch provided sustainable drug release over 8 h. Following its in vivo topical application, the MNs patch demonstrated an extended pre-corneal retention time over 3.5 h and exhibited great ocular biocompatibility. Additionally, such MNs patch could reversibly penetrate the corneal epithelium, generating an array of microchannels on the corneal surface, thereby increasing ocular bioavailability. Of greater significance, the use of MNs patch demonstrated the improved therapeutic effectiveness in treating endotoxin-induced uveitis (EIU) in a rabbit model compared to curcumin eye drops via a significant reduction in the infiltration of inflammatory cells such as CD45+ leukocytes and CD68+ macrophages. Overall, the topical application of the MNs patch as an efficient ocular drug delivery system could potentially serve as a promising approach for treating different types of intraocular disorders.
Collapse
Affiliation(s)
- Hui Shi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuo Huai
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huiling Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Lei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Huixiang Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
14
|
Xie W, Tan S, Ren X, Yu J, Yang C, Xie H, Ma Z, Liu Y, Yang S. Tumor-targeted astaxanthin nanoparticles for therapeutic application in vitro. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2023; 55:100721. [DOI: 10.1016/j.colcom.2023.100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Zong L, Wang Y, Song S, Zhang H, Mu S, Liu W, Feng Y, Wang S, Tu Z, Yuan Q, Li L, Pu X. Formulation and Evaluation on Synergetic Anti-Hepatoma Effect of a Chemically Stable and Release-Controlled Nanoself-Assembly with Natural Monomers. Int J Nanomedicine 2023; 18:3407-3428. [PMID: 37377983 PMCID: PMC10292624 DOI: 10.2147/ijn.s408416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.
Collapse
Affiliation(s)
- Lanlan Zong
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yanling Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shiyu Song
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Huiqi Zhang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shengcai Mu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Wenshang Liu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yu Feng
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shumin Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Ziwei Tu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Qi Yuan
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Luhui Li
- Medical school, Henan Technical Institute, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
16
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
17
|
Yan L, Lin S, Wang L, Wang Y, Zhou D, Zeng Q. Multifunctional and multimodality theranostic nanomedicine for enhanced phototherapy. J Mater Chem B 2023; 11:1808-1817. [PMID: 36734460 DOI: 10.1039/d2tb02345h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in recent years for its favorable therapeutic efficacy in cancer therapy. However, PDT alone is insufficient to improve the therapeutic efficiency mainly due to the limited penetration depth of light, the insufficient O2 supply in the hypoxic microenvironment, and the high level of reducing substances in cancer cells. To overcome these limitations, a multifunctional MnO2 nanoparticle was constructed with honeycomb MnO2 which was loaded with the photosensitizer Ce6 and modified with polydopamine on its surface (HMnO2/C&P) to achieve efficient PDT/mild photothermal treatment (PTT) combination therapy. HMnO2/C&P had high drug loading contents (11.2% Ce6) and can be responsive to the tumor microenvironment (TME), supply O2 to alleviate the hypoxic microenvironment, and clear GSH to reduce the consumption of ROS, thus enhancing the PDT effect. The introduction of PDA can improve the stability of HMnO2/C&P, and further give the ability of PTT to act as nanomedicine. The results of in vitro and in vivo experiments show that HMnO2/C&P based PDT/mild PTT combination therapy has an excellent inhibitory effect on tumor growth. Meanwhile, HMnO2/C&P can act as a fluorescence imaging reagent and a TME triggerable magnetic resonance imaging (MRI) contrast agent, thus having excellent multimodal self-tracking abilities. Collectively, this study provides a new perspective on the design of multifunctional theranostic nanomedicine to maximize the efficacy of cancer phototherapy.
Collapse
Affiliation(s)
- Libiao Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Siqi Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Qingbing Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| |
Collapse
|
18
|
Wu Y, Xia T, Ma X, Lei L, Du L, Xu X, Liu X, Shi Y, Li X, Lin D. Autocatalytic strategy for tunning drug release from peptide-drug supramolecular hydrogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
19
|
Li A, Zou J, Zhuo X, Chen S, Chai X, Gai C, Li X, Zhao Q, Zou Y. Rational Optimizations of the Marine-Derived Peptide Sungsanpin as Novel Inhibitors of Cell Invasion. Chem Biodivers 2023; 20:e202201221. [PMID: 36651671 DOI: 10.1002/cbdv.202201221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Cancer metastasis, including cell invasion, is a major cause of poor clinical outcomes and death in numerous cancer patients. In recent years, many efforts have been made to develop potent therapeutic molecules from naturally derived peptides. Sungsanpin is a naturally derived lasso peptide that inhibits A549 cell invasion. We aimed to evaluate the potential of sungsanpin derivatives as candidates for anti-invasion drugs. We synthesized an analog of sungsanpin (Sun A) using a solid-phase peptide synthesis strategy (SPPS) and further modified its structure to improve its anti-invasion activity. All peptides were tested for their proliferative inhibition and anti-invasion activities in the A549 cell lines. Octapeptide S3 and cyclooctapeptide S4 upregulated the expression of TIMP-1 and TIMP-2 mRNA effectively and thus improved the inhibitory effect on the invasion of A549 cells. The two peptides can inhibit the invasion of A549 cells by up to 60 %, suggesting that they have potential as lead molecules for the development of peptide inhibitors.
Collapse
Affiliation(s)
- Anpeng Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jihua Zou
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350122, China
| | - Xiaobin Zhuo
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
20
|
Zhao X, Guo H, Bera H, Jiang H, Chen Y, Guo X, Tian X, Cun D, Yang M. Engineering Transferrin-Decorated Pullulan-Based Prodrug Nanoparticles for Redox Responsive Paclitaxel Delivery to Metastatic Lung Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4441-4457. [PMID: 36633929 DOI: 10.1021/acsami.2c18422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paclitaxel (PTX) remains a cornerstone in the treatment of locally advanced and metastatic lung cancer. To improve its therapeutic indices against lung cancer, novel redox-sensitive pullulan/PTX-based prodrug NPs (PULL-SS-PTX NPs) were accomplished, which were further surface-decorated with transferrin (TF), a cancer cell-targeting ligand, to afford TF-PULL-SS-PTX NPs. These prodrug NPs (drug content, >37% and average size, 134-163 nm) rapidly dismantled their self-assembled architecture upon exposure to simulated reducing conditions, causing a triggered drug release as compared to the control scaffold (PULL-CC-PTX NPs). These scaffolds also evidenced outstanding colloidal stability, cellular uptake efficiency, and discriminating cytotoxicity between the cancer and healthy cells. Intravenously delivered redox-sensitive NPs exhibited improved tumor-suppressing properties as compared to the control nanovesicles (PULL-CC-PTX NPs) in a B16-F10 melanoma lung metastasis mice model. The targeting efficiency and associated augmented anticancer potentials of TF-PULL-SS-PTX NPs relative to TF-free redox-responsive NPs and Taxol intravenous injection were also established on the transferrin receptor (TFR) overexpressed Lewis lung carcinoma (LLC-luc) cell-bearing mice model. Moreover, the TF-functionalized scaffold displayed a reduced systemic toxicity compared to that of Taxol intravenous injection. Overall, the proposed TF-decorated prodrug NPs could be a promising nanomedicine for intracellular PTX delivery against metastatic lung cancer.
Collapse
Affiliation(s)
- Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Haifei Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Durgapur, India713206
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Xidong Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| |
Collapse
|
21
|
Lin X, Wang Q, Du S, Guan Y, Qiu J, Chen X, Yuan D, Chen T. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Cell membrane-coated mesoporous silica nanorods overcome sequential drug delivery barriers against colorectal cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|