1
|
Yang WZ, Ullah I, Jiang ZG, Neder RB, Zhan CH. Tailoring ultra-small ZnO nanoparticles through cobalt doping to enhance photocatalytic CO 2 reduction. RSC Adv 2025; 15:11934-11941. [PMID: 40242493 PMCID: PMC12002163 DOI: 10.1039/d5ra01374g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Photocatalytic CO2 reduction offers a promising pathway for achieving sustainable development. However, the effectiveness of this method faces challenges related to imbalanced charge transfer/utilization. To address these issues, this paper reports on cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs). The cobalt doping not only increases light absorption but also improves charge transfer/separation kinetics and modulates the reduction reaction dynamics. Notably, photocatalytic tests show that cobalt-doped zinc oxide (Co-ZnO) achieves a CO yield of 143.90 μmol g-1 h-1, which is 15.73 times higher than that of undoped ZnO, and exhibits excellent stability. This study emphasizes the importance of polarization states induced by doping for achieving efficient charge separation, providing a new approach to enhance the efficiency of photoredox catalysis.
Collapse
Affiliation(s)
- Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Imran Ullah
- Institute for Crystallography and Structural Physics, Friedrich-Alexander University Erlangen-Nurnberg Staudtstr. 3 Erlangen 91058 Germany
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Reinhard B Neder
- Institute for Crystallography and Structural Physics, Friedrich-Alexander University Erlangen-Nurnberg Staudtstr. 3 Erlangen 91058 Germany
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
2
|
Huang MH, Huang CC, Suginaga T, Yoshida M, Nguyen VH, Lin KYA, Hu C. Carbon-Supported Nano-Dispersed Metallic Copper Derived From Carbonization of MOF-199 for Electrocatalytic CO 2 Reduction. Chem Asian J 2025:e202401171. [PMID: 40200806 DOI: 10.1002/asia.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
CO2 emissions and accumulation in the ecosystem have exacerbated climate change and increased the global temperature. This study focused on the activation of hydrothermally synthesized Cu metal-organic framework (MOF-199) with potassium citrate (C6H5K3O7) to produce MOF-derived carbon incorporated with nano-dispersed metallic Cu and oxidative Cu species to facilitate electrochemical CO2 reduction. Among all MOF samples, the resulting MOF-derived carbon, activated by C6H5K3O7, demonstrated the highest electrocatalytic current and lowest charge transfer resistance, achieving a Faradaic efficiency exceeding 50% for the production of acetic acid (CH3COOH) at an applied potential of - 1.1 V (vs RHE). The addition of C6H5K3O7 during preparation endowed the MOF-derived C with a mesoporous structure, thereby enhancing CO2 adsorption and activation. A proposed reaction pathway suggested that the generation of nano-dispersed metallic Cu is critical for forming Cu─C bonds for producing CH3COOH. This study indicates that Cu-containing MOF-derived carbon with beneficial properties for electrocatalytic applications owing to its nanoispersed Cu features could be readily synthesized.
Collapse
Affiliation(s)
- Min-Hua Huang
- Department of Chemical Engineering, Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Chun-Chieh Huang
- Department of Chemical Engineering, Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Taki Suginaga
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Van Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - K-Y Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chechia Hu
- Department of Chemical Engineering, Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
- R&D center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan
| |
Collapse
|
3
|
Tripathi A, Thapa R. Size-, shape-, facet- and support-dependent selectivity of Cu nanoparticles in CO 2 reduction through multiparameter optimization. NANOSCALE 2025; 17:3360-3369. [PMID: 39697178 DOI: 10.1039/d4nr03567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study investigates the limited selectivity of the Cu111 surface for C-C bond formation during CO2 reduction and explores the factors influencing selectivity using Cu nanoparticles smaller than 2 nm. The optimal nanoparticle size for C-C bond formation on the 111 facet with minimal overpotential is determined using density functional theory. A suitable supporting surface to enhance the stability and catalytic performance of the Cu-based nanoparticles is identified. Various Cu catalyst geometries, including planar surfaces and cuboctahedral, icosahedral, and truncated octahedral Cu nanoparticles, are considered. Size-dependent effects on the binding energies of reaction intermediates and hydrogen atoms are examined. Carbon-based surfaces, particularly 2SO2-doped graphene nanoribbons, are stable hosts for the Cu nanoparticles and help in retaining the activity for CO2 reduction. Scaling relations between the binding energies of the intermediates suggest COOH binding energy as an energy descriptor. Through multiparameter optimization and with the help of parity line and graphical construction, Cu38 and Cu79 are found to be the most promising surface for C2 product generation. This study provides insights into the factors influencing the selectivity and catalytic performance of Cu nanoparticles, aiding the development of efficient catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Anjana Tripathi
- Department of Physics, SRM University - AP, Amaravati 522 240, Andhra Pradesh, India.
| | - Ranjit Thapa
- Department of Physics, SRM University - AP, Amaravati 522 240, Andhra Pradesh, India.
- Centre for Computational and Integrative Sciences, SRM University - AP, Amaravati 522 240, Andhra Pradesh, India
| |
Collapse
|
4
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312894. [PMID: 38722084 PMCID: PMC11733726 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Liangpang Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Qian Lu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jiping Sun
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Zhanyou Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Chunshan Song
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jimmy C. Yu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Ying Wang
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| |
Collapse
|
5
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zang H, Liu C, Ji Q, Wang J, Lu H, Yu N, Geng B. Enhancing local K + adsorption by high-density cube corners for efficient electroreduction of CO 2 to C 2+ products. Chem Sci 2024; 15:10858-10866. [PMID: 39027287 PMCID: PMC11253177 DOI: 10.1039/d4sc02170c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Reducing carbon dioxide (CO2) to high value-added chemicals using renewable electricity is a promising approach to reducing CO2 levels in the air and mitigating the greenhouse effect, which depends on high-efficiency electrocatalysts. Copper-based catalysts can be used for electroreduction of CO2 to produce C2+ products with high added value, but suffer from poor stability and low selectivity. Herein, we propose a strategy to enhance the field effect by varying the cubic corner density on the surface of Cu2O microspheres for improving the electrocatalytic performance of CO2 reduction to C2+ products. Finite element method (FEM) simulation results show that the high density of cubic corners helps to enhance the local electric field, which increases the K+ concentration on the catalyst surface. The results of CO2 electroreduction tests show that the FEC2+ of the Cu2O catalyst with high-density cubic corners is 71% at a partial current density of 497 mA cm-2. Density functional theory (DFT) calculations reveal that Cu2O (111) and Cu2O (110) can effectively reduce the energy barrier of C-C coupling and improve the FEC2+ at high K+ concentrations relative to Cu2O (100). This study provides a new perspective for the design and development of efficient CO2RR catalysts.
Collapse
Affiliation(s)
- Hu Zang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Changjiang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Qinyuan Ji
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Jiahao Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Haiyan Lu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University Jiuhua Road 189 Wuhu 241002 China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei 230031 China
| |
Collapse
|
8
|
Lu P, Lv J, Chen Y, Ma Y, Wang Y, Lyu W, Yu J, Zhou J, Yin J, Xiong Y, Wang G, Ling C, Xi S, Zhang D, Fan Z. Steering the Selectivity of Carbon Dioxide Electroreduction from Single-Carbon to Multicarbon Products on Metal-Organic Frameworks via Facet Engineering. NANO LETTERS 2024; 24:1553-1562. [PMID: 38266492 DOI: 10.1021/acs.nanolett.3c04092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.
Collapse
Affiliation(s)
- Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Weichao Lyu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Du S, Yang P, Li M, Tao L, Wang S, Liu ZQ. Catalysts and electrolyzers for the electrochemical CO 2 reduction reaction: from laboratory to industrial applications. Chem Commun (Camb) 2024; 60:1207-1221. [PMID: 38186078 DOI: 10.1039/d3cc05453e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To cope with the urgent environmental pressure and tight energy demand, using electrocatalytic methods to drive the reduction of carbon dioxide molecules and produce a variety of fuels and chemicals, is one of the effective pathways to achieve carbon neutrality. In recent years, many significant advances in the study of the electrochemical carbon dioxide reduction reaction (CO2RR) have been made, but most of the works exhibit low current density, small electrode area and poor long-term stability, which are not suitable for large-scale industrial applications. Herein, combining the research achievements obtained in laboratories and the practical demand of industrial production, we summarize recent frontier progress in the field of the electrochemical CO2RR, including the fundamentals of catalytic reactions, catalyst design and preparation, and the construction of electrolyzers. In addition, we discuss the bottleneck problem of industrial CO2 electrolysis, and further present the prospect of the essential issues to be solved by the available technology for industrial electrolysis. This review can provide some basic understanding and knowledge accumulation for the development and practical application of electrochemical CO2RR technology.
Collapse
Affiliation(s)
- Shiqian Du
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, China.
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, China.
| | - Pupu Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, China.
| | - Mengyu Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, China.
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, China.
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, China.
| | - Zhao-Qing Liu
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, China.
| |
Collapse
|
10
|
Li K, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO 2 conversion. Chem Sci 2024; 15:854-878. [PMID: 38239694 PMCID: PMC10793651 DOI: 10.1039/d3sc05026b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.
Collapse
Affiliation(s)
- Kaining Li
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
11
|
Yang Z, Wen X, Guo X, Chen Y, Wei R, Gao L, Pan X, Zhang J, Xiao G. High dispersion dendritic fibrous morphology nanospheres for electrochemical CO 2 reduction to C 2H 4. J Colloid Interface Sci 2023; 650:1446-1456. [PMID: 37481782 DOI: 10.1016/j.jcis.2023.07.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The electrochemical CO2 reduction to specific multi-carbon product on copper-based catalysts is subjected to low activity and poor selectivity. Herein, catalyst structure, morphology, and chemical component are systematically studied for bolstering the activity and selectivity of as-prepared catalyzers in this study. Dendritic fibrous nano-silica spheres favor the loading of active species and the transport of reactant from the central radial channel. Cu/DFNS with high dispersion active sites are fabricated through urea-assisted precipitation way. The coexistence of Cu(I)/Cu(II) induces a close combination of Cu active sites and CO2 on the Cu/DFNS interface, promoting the CO2 activation and CC coupling. The Cu-O-Si interface (Cu phyllosilicate) can improve CO2 and CO attachment. Cu/DFNS show the utmost Faradaic efficiency of C2H4 with a value of 53.04% at -1.2 V vs. RHE. And more importantly, in-situ ATR-SEIRAS reveals that the CC coupling is boosted for effectively producing C2H4 as a consequence of the existence of *COL, *COOH, and *COH intermediates. The mechanism reaction path of Cu/DFNS is inferred to be *CO2 → *COOH → *CO → *CO*COH → C2H4. Our findings will be helpful to gain insight into the links between morphology, texture, chemical component of catalyzers, and electrochemical reduction of CO2, providing valuable guidance in the design of more efficient catalysts.
Collapse
Affiliation(s)
- Zhixiu Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiu Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoxuan Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Chen
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd, Nanjing 211189, China
| | - Ruiping Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lijing Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaomei Pan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jin Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
12
|
Liang L, Feng Q, Wang X, Hübner J, Gernert U, Heggen M, Wu L, Hellmann T, Hofmann JP, Strasser P. Electroreduction of CO 2 on Au(310)@Cu High-index Facets. Angew Chem Int Ed Engl 2023; 62:e202218039. [PMID: 36656994 DOI: 10.1002/anie.202218039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2 RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.
Collapse
Affiliation(s)
- Liang Liang
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Quanchen Feng
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Xingli Wang
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Jessica Hübner
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Ulrich Gernert
- Institutes of Physical Science and Information Technology, Center for Electron Microscopy (ZELMI), Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Longfei Wu
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Tim Hellmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
13
|
Zhang L, Li X, Chen L, Zhai C, Tao H. Honeycomb-like CuO@C for electroreduction of carbon dioxide to ethylene. J Colloid Interface Sci 2023; 640:783-790. [PMID: 36898182 DOI: 10.1016/j.jcis.2023.02.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The electrochemical CO2 reduction (ECR) of high-value multicarbon products is an urgent challenge for catalysis and energy resources. Herein, we reported a simple polymer thermal treatment strategy for preparing honeycomb-like CuO@C catalysts for ECR with remarkable C2H4 activity and selectivity. The honeycomb-like structure favored the enrichment of more CO2 molecules to improve the CO2-to-C2H4 conversion. Further experimental results indicate that the CuO loaded on amorphous carbon with a calcination temperature of 600 °C (CuO@C-600) has a Faradaic efficiency (FE) as high as 60.2% towards C2H4 formation, significantly outperforming pure CuO-600 (18.3%), CuO@C-500 (45.1%) and CuO@C-700 (41.4%), respectively. The interaction between the CuO nanoparticles and amorphous carbon improves the electron transfer and accelerates the ECR process. Furthermore, in situ Raman spectra demonstrated that CuO@C-600 can adsorb more adsorbed *CO intermediates, which enriches the CC coupling kinetics and promotes C2H4 production. This finding may offer a paradigm to design high-efficiency electrocatalysts, which can be beneficial to achieve the "double carbon goal."
Collapse
Affiliation(s)
- Lina Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xin Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hengcong Tao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Yan T, Wang P, Sun WY. Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO 2 Electroreduction to C 2 H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206070. [PMID: 36538751 DOI: 10.1002/smll.202206070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2 RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal-organic framework (MOF), named as Cu-MOF-CF, to realize improved electrochemical CO2 RR performance, is reported. The Cu-MOF-CF shows suppression of CH4 , great increase in C2 H4 selectivity (48.6%), and partial current density of C2 H4 at -1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu-MOF-CF for CO2 RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu-MOF in situ for CF, and the enlarged active surface area by porous Cu-MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2 RR.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Zhu Q, Hu Y, Chen H, Meng C, Shang Y, Hao C, Wei S, Wang Z, Lu X, Liu S. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO 2 to C 2+ products. NANOSCALE 2023; 15:2106-2113. [PMID: 36648138 DOI: 10.1039/d2nr05399c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to added-value C2+ products is a worthy way to effectively reduce CO2 levels in the atmosphere. Cu nanomaterials have been proposed as efficient CO2RR catalysts for producing C2+ products; however, the difficulties in controlling their efficiency and selectivity hinder their applications. Herein, we propose a simple routine to construct a graphdiyne (GDY) supported Ag-Cu nanocluster as a C2+ product-selective electrocatalyst and optimize the composition by electrochemical performance screening. The synthesized Ag-Cu nanoclusters are uniformly distributed on the surface of GDY with particle sizes constricted to 3.7 nm due to the strong diyne-Cu interaction. Compared to Cu/GDY, Ag-Cu/GDY tandem schemes exhibited superior CO2RR to C2+ performance with a Faraday efficiency (FE) of up to 55.1% and a current density of 48.6 mA cm-2 which remain stable for more than 33 hours. Theoretical calculations show that the adsorption energy of CO is much higher on Cu (-1.066 eV) than on Ag (-0.615 eV), thus promoting the drift of *CO from Ag to Cu. Moreover, the calculations indicate that the key C-C coupling reaction of *CO with *COH is more favored on Ag-Cu/GDY than on the original Cu/GDY which contributes to the formation of C2+ products. Our findings shed light on a new strategy of combining a GDY support with a tandem catalytic scheme for developing new CO2RR catalysts with superior selectivity and activity for C2+ products.
Collapse
Affiliation(s)
- Qiuying Zhu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Hongyu Chen
- College of Science, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China
| | - Chen Meng
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Yizhu Shang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Chengcheng Hao
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Shuxian Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| |
Collapse
|
16
|
Chen X, Zhao Y, Han J, Bu Y. Copper-Based Catalysts for Electrochemical Reduction of Carbon Dioxide to Ethylene. Chempluschem 2023; 88:e202200370. [PMID: 36651767 DOI: 10.1002/cplu.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Electrochemical reduction of CO2 into high energy density multi-carbon chemicals or fuels (e. g., ethylene) via new renewable energy storage has extraordinary implications for carbon neutrality. Copper (Cu)-based catalysts have been recognized as the most promising catalysts for the electrochemical reduction of CO2 to ethylene (C2 H4 ) due to their moderate CO adsorption energy and moderate hydrogen precipitation potential. However, the poor selectivity, low current density and high overpotential of the CO2 RR into C2 H4 greatly limit its industrial applications. Meanwhile, the complex reaction mechanism is still unclear, which leads to blindness in the design of catalysts. Herein, we systematically summarized the latest research, proposed possible conversion mechanisms and categorized the general strategies to adjust of the structure and composition for CO2 RR, such as tip effect, defect engineering, crystal plane catalysis, synergistic effect, nanoconfinement effect and so on. Eventually, we provided a prospect of the future challenges for further development and progress in CO2 RR. Previous reviews have summarized catalyst designs for the reduction of CO2 to multi-carbon products, while lacking in targeting C2 H4 alone, an important industrial feedstock. This Review mainly aims to provide a comprehensive understanding for the design strategies and challenges of electrocatalytic CO2 reduction to C2 H4 through recent researches and further propose some guidelines for the future design of copper-based catalysts for electroreduction of CO2 to C2 H4 .
Collapse
Affiliation(s)
- Xiao Chen
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Jiayi Han
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| |
Collapse
|
17
|
Kuang S, Li M, Chen X, Chi H, Lin J, Hu Z, Hu S, Zhang S, Ma X. Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li L, Jin X, Yu X, Zhong M. Bimetallic Cu-Bi catalysts for efficient electroreduction of CO2 to formate. Front Chem 2022; 10:983778. [PMID: 36262342 PMCID: PMC9573945 DOI: 10.3389/fchem.2022.983778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Electrochemical CO2 reduction offers an effective means to store renewable electricity in value-added chemical feedstocks. Much effort has been made to develop catalysts that achieve high Faradaic efficiency toward Formate production, but the catalysts still need high operating potentials to drive the CO2–to–formate reduction. Here we report physical vapor deposition to fabricate homogeneously alloyed, compositionally controlled Cu1-xBix bimetallic catalysts over a large area with excellent electrical conductivity. Operating electrochemical studies in Ar-saturated and CO2-saturated electrolytes identified that Cu–Bi catalysts notably suppress the competing H2 evolution reaction and enhance CO2–to–formate selectivity. We reported a formate Faradaic efficiency of >95% at an improved cathodic potential of ∼−0.72 V vs. RHE and a high formate cathodic energy efficiency of ∼70%. The electrochemical reaction is stable over 24 h at a current density of 200 mA cm−2. The work shows the advantages of bimetallic catalysts over single metal catalysts for increased reaction activity and selectivity.
Collapse
|