1
|
Lin Y, Chang Z, Chen Y, Liang J, Zu Z, Wang X. Polymolybdate-Based Complexes Containing Flexible Metal-Organic Windmills with Pseudocapacitive Activity and Electrochemical Sensing Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12245-12256. [PMID: 40332814 DOI: 10.1021/acs.langmuir.5c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Two novel semirigid bis(pyridine)-bis(amide) ligands featuring a pyrazole group as a linker, N,N'-bis(3-picolylamine)-1-hydropyrazole (3-Hdpap), and N,N'-bis(3-pyridinamide)-1-hydropyrazole (3-Hdpyp) were used to combine with polymolybdates (POMos) and a cobalt ion under solvothermal conditions. Four different POMo-based metal-organic complexes (POMoOCs) [Co(3-Hdpap)(β-Mo8O26)0.5(H2O)] (1), [Co(3-H2dpap)(TeMo6O24)0.5(H2O)2] (2), H{Co(3-H2dpap)[AlMo6(OH)5O19](H2O)2} (3), and H2{Co(3-Hdpyp)[CrMo6(OH)5O19](H2O)2}·2H2O (4) were obtained and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, and powder X-ray diffraction. Various metal-organic windmill configurations can be observed in the title complexes due to different POMos and ligands, finally resulting in diverse POMo-based architectures, including a two-dimensional (2D) network (1), one-dimensional (1D) supramolecular chains (2-3), and a 2D supramolecular network (4). The electrochemical performances of four complexes were studied in the three-electrode system with their corresponding modified electrodes. At the current density of 1 A·g-1, the specific capacitance values for the glassy carbon electrode modified by 1-4 were recorded as 1658.3, 1026.5, 647.8, and 832.2 F·g-1, respectively. 1-GCE exhibits the best pseudocapacitive activity and is superior to most reported polyoxometalate-based complexes. After 1000 cycles, its capacitance retention rate reaches 89%. Furthermore, the carbon paste electrode bulk-modified by complex 1 serves as an electrochemical sensor for the detection of Cr(VI) and exhibits a low detection limit.
Collapse
Affiliation(s)
- Yuchun Lin
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| | - Yongzhen Chen
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| | - Juju Liang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| | - Zhifei Zu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China
| |
Collapse
|
2
|
Zhou Q, Wang X, Rong S, Li G, Jiang Q, Pang H, Ma H. Efficient Electrocatalytic Conversion of Nitrate in Water with Anderson-Type Polyoxometalate-Modified Co-MOF. Inorg Chem 2025; 64:5291-5301. [PMID: 40048358 DOI: 10.1021/acs.inorgchem.5c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The electrochemical conversion of nitrate to ammonia has garnered growing attention, as it aims to reduce carbon emissions and promote environmental sustainability. Nevertheless, developing an electrocatalyst that exhibits outstanding activity, selectivity, and stability is still a significant challenge. Here, we report three Anderson-type polyoxometalates (POMs)-modified cobalt metal-organic framework (Co-MOF), namely, Co-MOF/MMo6 (M = Fe, Co, Ni) composite electrocatalyst, fabricated using an easy standing method. Among them, POMs not only facilitated the formation of lamellar structures with a high specific surface area of Co-MOF as a morphology regulator but also contributed to electron transfer between Co-MOF as an electron-rich cluster, achieving an enhancement in the catalytic performance of NO3RR to NH3. In particular, Co-MOF/NiMo6 exhibits NO3RR performance with maximal Faradaic efficiency of 98.2% at -0.8 V vs the reverse hydrogen electrode (vs reversible hydrogen electrode (RHE)) and NH3 yield rate of up to 10.88 mg h-1 mgcat.-1, better than most previously reported MOF-based catalysts. By in situ spectrometric measurement, we demonstrate that the NH3 formation via a kinetically favored pathway of NO3- → *NO3 → *NO2 → *NO → *NH2OH → *NH3. This work indicates the considerable potential of POM-based MOF materials for the electrochemical NO3RR to NH3.
Collapse
Affiliation(s)
- Qingyu Zhou
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Shuang Rong
- Heilongjiang Electric Power Research Institute, State Grid, Harbin 150030, P. R. China
| | - Gang Li
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Qiushuang Jiang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Haijun Pang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| |
Collapse
|
3
|
Wang JF, Yin CX, Qi JX, Ma YY, Lin ZG, Han ZG. An 18-connected wheel-shaped molybdenum(V) nickel-phosphate cluster for photoelectrochemical sensing of levofloxacin. Chem Commun (Camb) 2025; 61:1914-1917. [PMID: 39780742 DOI: 10.1039/d4cc06389a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
An 18-connected {Mo16Ni16P24}-based 2-D layered network was constructed for photoelectrochemical sensing of levofloxacin, and it represents the highest connection number of the {Mo16Ni16P24} wheel cluster to date. The detection limit is as low as 6.46 nM with a high sensitivity of 110.87 μA μM-1 and good practicality in a milk sample.
Collapse
Affiliation(s)
- Jie-Fei Wang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| | - Chun-Xiao Yin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| | - Jia-Xin Qi
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| | - Yuan-Yuan Ma
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| | - Zheng-Guo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| | - Zhan-Gang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.
| |
Collapse
|
4
|
Chai Z, Zhou A, Huang J, Qu L, Ge J, Zhang L, Li Z. Cu-curcumin nanozyme for detection of Cr(VI) through an off-on strategy based on peroxidase mimicking activity. Analyst 2025; 150:371-377. [PMID: 39670858 DOI: 10.1039/d4an01358a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hexavalent chromium ions (Cr(VI)) possess inherent toxicity and propensity for bioaccumulation in the environment. Herein, a Cu-curcumin nanozyme was synthesized via a one-pot solvothermal method. Based on the high peroxidase-like activity of the Cu-curcumin nanozyme, a novel and economical colorimetric platform has been developed for Cr(VI) assay. In the presence of hydrogen peroxide (H2O2), the Cu-curcumin nanozyme can catalyze the transformation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue product oxTMB. 8-Hydroxyquinoline (8-HQ) can inhibit the catalysis of the Cu-curcumin/TMB/H2O2 system, causing the blue color to fade. With the addition of Cr(VI), the peroxidase-like activity of the Cu-curcumin nanozyme is increased significantly, leading to the restoration of the Cu-curcumin/TMB/H2O2 system color. After optimization of the experimental parameters, a novel colorimetric sensor for Cr(VI) assay has been successfully developed with a low limit of detection (LOD) of 31.5 nM, affirming its potential for accurate Cr(VI) quantification in environmental specimens. In addition, paper strips integrated with a smartphone platform enhance the versatility and portability of the Cr(VI) assay, achieving an LOD of 0.1 μM.
Collapse
Affiliation(s)
- Ziwei Chai
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
| | - Aifang Zhou
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
| | - Jingjing Huang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
| | - Jia Ge
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China
| | - Lin Zhang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China.
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Pardiwala A, Desai MA, Jangir R. Polyoxometalate-supported transition metal complexes for the oxidative cross-coupling of amines and alcohols. Dalton Trans 2024; 53:17207-17220. [PMID: 39377281 DOI: 10.1039/d4dt02289k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Three new hybrid polyoxometalates (POMs) based on transition metals, namely, copper metal with γ-[Mo8O26]4- polyoxometalates [Cu(DMF)4(Mo8O26)·2C3H8NO]·1.8 DMF (1), cobalt metal with hexamolybdate [Co(DMSO)6][Mo6O19] (2), and nickel metal with hexamolybdate [Ni(DMSO)6][Mo6O19] (3), were developed. These materials were characterised by applying both analytical and spectroscopic techniques (IR, TGA, and CHNO elemental analysis), and structural elucidation was performed using single-crystal X-ray diffraction studies. Among these hybrid POMs, octamolybdate with copper was used for the catalytic production of benzimidazoles. The incorporation of [Cu(DMF)4] between two octamolybdates results in the transformation of POMs into a useful catalyst, which effectively catalyses the oxidative cross-coupling of anilines, benzyl alcohol, and sodium azide to produce benzimidazole. This catalytic reaction occurs in the presence of tert-butyl hydroperoxide (TBHP) at a moderate temperature. Benzimidazole and its derivatives are highly preferred owing to their wide-ranging biological activities and clinical applications. These compounds are exceptionally effective in terms of their selectivity ratio and inhibitory activity. The catalytic reaction presented herein is a one-pot procedure that includes a series of reactions, such as C-H functionalization, condensation, ortho selective amination, and cyclization.
Collapse
Affiliation(s)
- Ankita Pardiwala
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat-395 007, Gujarat, India.
| | - Meghal A Desai
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
6
|
Yang JF, Ma YY, Xie N, Tang YT, Du J, Yin XR, Lin ZG, Han ZG. In Situ Ligand-Transformation-Assisted Assembly of a Polyoxometalate and Silver-Phosphine Oxide Cluster for Colorimetric Detection of Phenol Contaminants. Inorg Chem 2024; 63:18200-18210. [PMID: 39302043 DOI: 10.1021/acs.inorgchem.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In situ ligand transformation strategies represent an efficient pathway for constructing function-oriented polyoxometalate (POM)-based crystalline materials. Herein, three POM-based hybrid networks were synthesized through in situ transformation of the phosphine ligand, formulated as [Ag(dppeo)6][H2PMo12O40]·5H2O (1), [Ag(dedpo)]4[SiW12O40]·6H2O (2), and [Ag(dppeo)]3[PW12O40]·3H2O (3) (dedpo = (2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide; dppeo = ethane-1,2-diylbis(diphenylphosphine oxide)). During the synthesis of these compounds, the 1,2-diphenylphosphine ethane molecule underwent in situ oxidation, transforming into dppeo and dedpo ligands, respectively. Compound 1 features a supramolecular architecture assembled from [Ag(dppeo)3]+/[Ag2(dppeo)6]2+ cationic clusters with disordered Ag centers and protonated [H2PMo12O40]- anions. Compound 2 presents a 3-D POM-supported metal-organic framework consisting of binuclear [Ag(dedpo)]22+ units, {-dedpo-Ag-dedpo-} chains, and [SiW12O40]4- polyoxoanions. Compound 3 displays a 2-D layered structure formed by {-dppeo-Ag3-dppeo-} chains and [PW12O40]3- clusters. Pronounced argentophilic interactions are observed in compounds 1 and 3. The three compounds demonstrate satisfactory heterogeneous catalytic activity in the colorimetric detection reactions toward phenol pollutants with detection limits of 1.73, 1.92, and 4.6 μM, respectively. Additionally, compounds 1-3 show high anti-interference capabilities and high sensitivity in differentiating phenol from its halogenated derivatives. This work presents some guidance for designing specific function-oriented POM-based materials via an in situ ligand transformation strategy.
Collapse
Affiliation(s)
- Jun-Fang Yang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yuan-Yuan Ma
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Nan Xie
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yu-Tao Tang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Jing Du
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xin-Ran Yin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zheng-Guo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zhan-Gang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| |
Collapse
|
7
|
Yang M, Li J, Hui K, Ying J, Tian A. The applications of Keggin-based metal-organic compounds in sensing and catalysis. Dalton Trans 2024; 53:15412-15420. [PMID: 39162704 DOI: 10.1039/d4dt01894j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Environmental pollution and energy problems caused by excessive use of fossil fuels deviate from the theme of green and sustainable development. It is very promising to detect small molecules or catalyze the conversion of pollutants to obtain renewable energy by using photoelectric technology. Therefore, there is an urgent requirement to develop materials with low detection limits and high catalytic performance. Keggin polyoxometalate-based metal-organic compounds (POMOCs) hold great promise for sensing, and catalytic applications due to their controllable structure, remarkable reversible multi-electron transfer capability and multi-component synergistic activity. In this review, the applications of Keggin POMOCs in photocatalytic/electrocatalytic conversion of energy materials and the detection of metal ion/inorganic molecule are introduced. The different mechanisms of Keggin POM units and MOF units in sensors and catalysis are discussed. Additionally, the prospects of the Keggin POMOCs as electrode materials or catalysts for enhancing the performance of sensors and catalysts are discussed, which will provide a platform for further development of advanced Keggin POMOC material-based sensors and catalytic systems.
Collapse
Affiliation(s)
- Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jiaxing Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
8
|
Bi HX, Zhang XJ, He JY, Liu YQ, Ma YY, Han ZG. Phosphomolybdates for Dual-Mode Photoelectrochemical Sensing toward Trace Chromium(VI) and Tetracycline. Inorg Chem 2024; 63:16768-16779. [PMID: 39190887 DOI: 10.1021/acs.inorgchem.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly sensitive photoelectrochemical (PEC) sensors for trace carcinogens, such as heavy metal chromium(VI) [Cr(VI)] and antibiotic tetracycline (TC) are crucial. Herein, by integration of photoactive and redox phosphomolybdates with conjugated organic components, types of dual-mode PEC sensors were synthesized for sensing trace Cr(VI) and TC pollutants, with formulas of (H2bimb)2[Co2(bimb)1.5][Co(H2O)4][Co(P4Mo6O31H6)2]·6H2O (1), (H2bib)2[Co(H2O)3][Co2(H2O)5][Co(P4Mo6O31H6)2]·9H2O (2), and (H2bib)6[Co(Hbib)2(H2O)5][Co(P4Mo6O31H7)2]2·15H2O (3), where bimb represents 1,4-bis(1-imidazolyl)benzene and bib is 4,4'-bis(imidazolyl)bibphenyl. Hybrid 1 consisted of a three-dimensional framework structure constructed by Co{P4Mo6}2 clusters and one-dimensional (1D) {Co-bimb} chains, hybrid 2 exhibited 1D Co ion-bridged Co{P4Mo6}2 chains hydrogen-bonding with [H2bib]2+ cations, and hybrid 3 showed a discrete hybrid structure built upon a Co{P4Mo6}2 cluster modified by the {Co-bib} unit. Hybrids 1-3 displayed wide spectral absorption and excellent electrochemical redox properties, enabling dual-mode PEC responses to Cr(VI) reduction and TC oxidation. For Cr(VI) detection, hybrids 1-3 exhibited high sensitivities of 364.40, 225.72, and 124.29 μA·μM-1 as well as "nM" level detection limits (LODs) of 4.9, 10.0, and 11.0 nM, respectively. For TC detection, the sensitivities of hybrids 1-3 were 494.72, 308.78, and 174.03 μA·μM-1 and the LODs were 5.2, 6.1, and 12.9 nM, respectively. This research offers significant insights into designing efficient PEC sensors for the detection of environmental pollutants.
Collapse
Affiliation(s)
- Hao-Xue Bi
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiu-Juan Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Jing-Yan He
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
9
|
Iftikhar T, Iftikhar N, Chi G, Qiu W, Xie Y, Liang Z, Huang C, Su L. Unlocking the future of brain research: MOFs, TMOs, and MOFs/TMOs for electrochemical NTMs detection and analysis. Talanta 2024; 267:125146. [PMID: 37688896 DOI: 10.1016/j.talanta.2023.125146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The central nervous system relies heavily on neurotransmitters (NTMs), and NTM imbalances have been linked to a wide range of neurological conditions. Thus, the development of reliable detection techniques is essential for advancing brain studies. This review offers a comprehensive analysis of metal-organic frameworks (MOFs), transition metal oxides (TMOs), and MOFs-derived TMOs (MOFs/TMOs) as materials for electrochemical (EC) sensors targeting the detection of key NTMs, specifically dopamine (DA), epinephrine (EP), and serotonin (SR). The unique properties and diverse families of MOFs and TMOs, along with their nanostructured hybrids, are discussed in the context of EC sensing. The review also addresses the challenges in detecting NTMs and proposes a systematic approach to tackle these obstacles. Despite the vast amount of research on MOFs and TMOs-based EC sensors for DA detection, the review highlights the gaps in the literature for MOFs/TMOs-based EC sensors specifically for EP and SR detection, as well as the limited research on microneedles (MNs)-based EC sensors modified with MOFs, TMOs, and MOFs/TMOs for NTMs detection. This review serves as a foundation to encourage researchers to further explore the potential applications of MOFs, TMOs, and MOFs/TMOs-based EC sensors in the context of neurological disorders and other health conditions related to NTMs imbalances.
Collapse
Affiliation(s)
- Tayyaba Iftikhar
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Nishwa Iftikhar
- Department of Medicine, Quaid-e-Azam Medical College, Bahawalpur, Punjab, Pakistan
| | - Guilin Chi
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Wenjing Qiu
- Department of Rheumatology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Yuanting Xie
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China.
| | - Zhen Liang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Cibo Huang
- Department of Rheumatology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG. Bridging Component Strategy in Phosphomolybdate-Based Sensors for Electrochemical Determination of Trace Cr(VI). Inorg Chem 2024; 63:842-851. [PMID: 38100035 DOI: 10.1021/acs.inorgchem.3c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(μ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(μ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 μA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.
Collapse
Affiliation(s)
- Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Meng-Si Guo
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wen-Ting An
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
11
|
Amini M, Yousofvand A, Hosseinifard M, Bayrami A, Janczak J. Synthesis and characterization of a new copper-based polyoxomolybdate and its catalytic activity for azide-alkyne cycloaddition reaction under UV light irradiation. Sci Rep 2024; 14:653. [PMID: 38182621 PMCID: PMC10770156 DOI: 10.1038/s41598-023-50624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
A new organic-functionalized Cu-based Anderson-type polyoxomolybdate, namely (C7H15N4)2[Na(H2O)4]2[C6H12CuMo6N2O24]·2(H2O) (CuII-POM), was synthesized via a simple one-pot reaction and subsequently characterized using a range of analytical and spectral techniques. Structural investigation by single crystal X-ray diffraction analysis revealed that the polyanion component of the synthesized compound (i.e. [C6H12CuMo6N2O24]4-) possesses a δ-isomer Anderson-type structure, which is surrounded by four lattice water molecules and four [C7H15N4-NaH15(H2O)8]4+ cations in the crystal packing arrangement. The resulting double-sided tris-functionalized Anderson-type compound can function as highly effective heterogeneous photocatalysts for the copper(I)-catalyzed Huisgen azide-alkyne cycloaddition (Cu-AAC) reaction of terminal alkyne, benzyl halides, and sodium azide (acts as the azidonation and reducing agent) in aqueous media. Ultraviolet light irradiation enhances the catalytic activity of CuII-POM ~ 4.4 times of the "off" situation under reaction conditions of 0.00239 mmol cat., 80 °C, 8 h, 2 mL H2O, So that the isolated yields for the AAC reaction involving a variety of terminal alkynes and benzyl halides using the CuII-POM catalyst ranged between 19-97%. The current study is the first report about using an efficient and economical Cu(II)-POM/UV/NaN3 catalytic system in the Cu-AAC reaction and reveals its significant potential for applying to other Cu(I)-catalyzed reactions.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Asmaa Yousofvand
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Arshad Bayrami
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422, Wrocław, Poland
| |
Collapse
|
12
|
Lun HJ, Dai SQ, Li YX, Guo HL, Andra S, Dang DB, Bai Y. Assembly of Lanthanide-Containing 3D [MnMo 9O 32] 6--Based Metal-Organic Frameworks and Oxidative Desulfurization Performance. Inorg Chem 2023; 62:19749-19757. [PMID: 37983184 DOI: 10.1021/acs.inorgchem.3c03194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Lanthanide-containing polyoxometalate-based metal-organic frameworks (POMOFs) not only enjoy intriguing architectures but also have good application prospects as catalysts. Herein, three novel three-dimensional (3D) POMOFs with the formulas of {H[Ln3(2,6-pydc)2(H2O)10(MnMo9O32)]·2H2O}n (Ln = La(1), Pr(2), Nd(3)) have been synthesized based on Waugh-type [MnMo9O32]6- anions and pyridine-2,6-dicarboxylate (2,6-H2pydc). Compounds 1-3 are isomorphic, and there are two kinds of one-dimensional (1D) helical chains with opposite handedness staggered into two-dimensional (2D) layers. Interestingly, the coordinated L- and R-[MnMo9O32]6- anions are encapsulated in 1D chains with the same chirality and are further expanded into 3D structures. The catalytic tests indicate that compounds 1-3 exhibit high-efficiency heterogeneous catalytic activity in the oxidative desulfurization reaction for catalyzing the oxidation of sulfides to sulfoxides using tert-butyl hydrogen peroxide (TBHP) as the oxidant. Moreover, a series of control experiments have been conducted to investigate the influence of various parameters such as temperature, time, solvent, catalyst, and substrate on the reaction. Significantly, compound 2, as an example, exhibits good reusability and structural stability in the oxidative desulfurization reaction. It is worth noting that investigations on the oxidative desulfurization of [MnMo9O32]6- anions are scarce. Moreover, their electrochemical properties are also explored.
Collapse
Affiliation(s)
- Hui-Jie Lun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Sheng-Qiang Dai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ya-Xin Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Hui-Li Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Swetha Andra
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
13
|
Yu S, Liu T, Ying J, Tian A, Yang M, Wang X. A series of isopolymolybdate-viologen hybrids with photo-, thermo- and electro-chromic properties. Dalton Trans 2023; 52:16631-16639. [PMID: 37888872 DOI: 10.1039/d3dt02928j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The combination of electron-deficient viologen ligands with electron-rich POMs is a typical acceptor-donor system that has recently received much attention. Under solvothermal and hydrothermal conditions, by introducing three symmetric viologen ligands into POM-based hybrid materials, we successfully constructed four POMs-viologen inorganic-organic hybrid compounds, namely (1,3-bcbpy)2·(δ-Mo8O26) (1) (1,3-bcbpy·2Cl = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridine dichloride), {CoII(1,4-bcbpy)2(H2O)2[H2(β-Mo8O26)]}·2H2O·2CH2O (2), (1,4-bcbpy)2·(δ-Mo8O26)·2H2O (3) (1,4-bcbpy·2Cl = 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridine dichloride, CH2O = formaldehyde), and {CuII(1,1-pmbby)2(H2O)[H2(β-Mo8O26)2]}·5H2O·C2H7N (4) (1,1-pmbby·2Cl = 1,1'-[1,4-phenylbis(methylene)]bis-(4,4'-bipyridine)dichloride, C2H7N = dimethylamine). These four compounds exhibit different fascinating structures, especially compound 4 is a typical metal-organic framework. Compounds 1-4 exhibit good discoloration behaviors under various external stimuli. For example, compounds 1-4 showed a positive response to the irradiation from a 300 W Xe lamp. When a positive voltage was applied to the ECD based on compounds 1-4, 1/2/3/4-ECD underwent a significant color conversion. What's more, compound 4 also showed obvious discoloration results after heating. In a word, 1-4 are multifunctional discoloration materials under different external stimuli. In addition, the coated filter paper prepared based on compound 3 can be used as a new printing material medium and can be successfully applied in erasable inkless printing and dual anti-counterfeiting.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
14
|
Hao X, Ying J, Zhang Y, Tian A, Yang M, Wang X. Four octamolybdate compounds with properties of organic dye adsorption and photocatalytic reduction of Cr(VI). Dalton Trans 2023; 52:13537-13546. [PMID: 37721162 DOI: 10.1039/d3dt01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hydrothermal synthesis was used to create four different POM-based compounds, namely {[Co(Hptpm)2(β-Mo8O26)0.5(ξ-Mo8O26)0.5]}·H2O (1), [Co(Hptpm)2(δ-Mo8O26)]·H2O (2), [Co(Hptpm)2(β-Mo8O26)] (3) and [Zn(Hptpm)2(β-Mo8O26)] (4) (ptpm = 4-[3-(3-pyridine-2-yl-[1,2,4]triazol-4-yl)-propyl]-morpholine). 1-4 containing different octamolybdate isomers were characterized. Compounds 1-4 showed good electrochemical performance and can be utilized as bifunctional sensors for NO2-, H2O2, Cr(VI) and Fe(III). Taking compound 1 as an example, the detection limits are 0.081 μM for NO2-, 0.072 μM for H2O2, 0.054 μM for Cr(VI) and 0.063 μM for Fe(III), respectively. Compounds 1-4 have good capacitance. Moreover, compounds 1-4 also show good adsorption properties for organic cationic dyes. The cationic dyes include methylene blue (MB), crystal violet (CV) and neutral red (NR). In addition, 1-4 have excellent characteristics that can reduce Cr(VI) to Cr(III) by photocatalytic technology. Within 30 min, the reduction rates were 95.85% for 1, 93.99% for 2, 90.29% for 3 and 88.18% for 4.
Collapse
Affiliation(s)
- Xinxin Hao
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Mengle Yang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
15
|
Li L, Lv Y, Jia C, Yin D, Dong Z, Zhan Z, Han J, Zhang J. Preparation of sludge-cyanobacteria composite carbon for synergistically enhanced co-removal of Cu(II) and Cr(VI). CHEMOSPHERE 2023; 320:138043. [PMID: 36738939 DOI: 10.1016/j.chemosphere.2023.138043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Traditional sludge disposal is currently restricted by the risk of secondary pollution. Sludge carbon material has gained widespread attention because of its low cost and environmentally sustainable properties. However, owing to the high ash content and low-energy density of sludge, sludge pyrolysis alone has certain limitations, and the performance of carbon materials needs to be improved. Herein, a sludge-cyanobacteria composite carbon (SCC) was easily synthesized, and the adsorption process of Cu(II) and Cr(VI) by SCC was examined. SCC-700-2-50% exhibited a high SBET (1047.54 m2/g) and developed pore structure rich in functional groups (such as -NH, -OH, and C-O). The combination of pore structure and functional groups improved the adsorption performance of SCC. The adsorption processes exhibited a synergistic effect in a binary system: the qm of Cu(II) and Cr(VI) were 386 mg/g and 341 mg/g, respectively, and the selectivity of Cu(II) adsorption by SCC was greater than Cr(VI). The adsorption process, examined by SEM-EDS, FTIR, and XPS analysis, indicated that Cu(II) as a cationic interface strengthens Cr(VI) adsorption through electrostatic interaction, and the anion Cr(VI) created a valid electrostatic shield against the electrostatic repulsion between H+ and Cu(II), facilitating Cu(II) adsorption. SCC had great reusability: Cu(II) and Cr(VI) adsorption capacity were 90% and 84%, of the initial adsorption capacity, respectively, after six cycles. This study demonstrates the prospect of SCC as a valid adsorbent for multiple heavy metal contaminations removal.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Ying Lv
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Chao Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Dawei Yin
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zilong Dong
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhaoshun Zhan
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jiazhen Han
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jun Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
16
|
Polyoxometalate-Encapsulated Metal-Organic Frameworks with Diverse Cages for the C–H Bond Oxidation of Alkylbenzenes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Zhang SM, Wang Y, Ma YY, Li ZB, Du J, Han ZG. Three-Dimensional Silver-Containing Polyoxotungstate Frameworks for Photocatalytic Aerobic Oxidation of Benzyl Alcohol. Inorg Chem 2022; 61:20596-20607. [DOI: 10.1021/acs.inorgchem.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Si-Meng Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Yue Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Zhao-Bin Li
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Jing Du
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| |
Collapse
|
18
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Chen Y, An H, Chang S, Li Y, Xu T, Zhu Q, Luo H, Huang Y, Wei Y. Two pseudo-polymorphic porous POM-pillared MOFs for sulfide-sulfoxide transformation: Efficient synergistic effects of POM precursors, metal sites and microstructures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Yin XY, Zhang YQ, Ma YY, He JY, Song H, Han ZG. Bifunctional Sensors Based on Phosphomolybdates for Detection of Inorganic Hexavalent Chromium and Organic Tetracycline. Inorg Chem 2022; 61:13174-13183. [PMID: 35944245 DOI: 10.1021/acs.inorgchem.2c02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring effective sensors for detecting possible hazards in a water system are greatly significant. This work proposed a strategy for stable and effective bifunctional sensors via incorporating hourglass-type phosphomolybdates into metal-organic fragments to construct a high-dimensional framework. Two hourglass-type phosphomolybdate-based electrochemical sensors toward heavy metal ion Cr(VI) and tetracycline (TC) detection were designed with the formula [CoII2(H2O)4NaI2][CoII(Hbpe)][NaI(bpe)1.5]{CoII[PV4MoV6O31H6]2}·9H2O (1) and [CoII(H2O)4NaI3][CoII(Hbpe)][CoII(bpe)]{CoII[PV4MoV6O31H6]2}·9H2O (2) [bpe = 1,2-di(4-pyridyl)ethylene]. Structural analysis showed that hybrids 1 and 2 possess three-dimensional POM-supported network features with favorable stability and exhibit reversible redox properties. Experiments found that this kind of hybrids as efficient sensors have excellent electrochemical performance toward Cr(VI) detection with high sensitivities of 0.111 μA·μM-1 for 1 and 0.141 μA·μM-1 for 2, fast response time of 1 s, and low detection limits of 30 nM for 1 and 27 nM for 2, which far meet the standard of WHO for drinking water. Moreover, hybrids 1-2 also exhibit fast responses to TC detection with sensitivities of 0.0073 and 0.022 μA·mM-1 and detection limits of 0.426 and 0.084 mM. This work offers a novel strategy for the purposeful design of efficient POM-based electrochemical sensors for accurate determination of contaminants in a practical water system.
Collapse
Affiliation(s)
- Xiao-Yu Yin
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Ya-Qi Zhang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Hao Song
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| |
Collapse
|
21
|
Wang P, Chishti AN, Chen P, Lv Z, Tan Y, Zhang H, Zha J, Ma Z, Ni L, Zhang LN, Wei Y. A Keggin-type polyoxomolybdate-based crystalline material formed by hydrothermal transformation: photo/electro-catalytic properties and mechanism study. CrystEngComm 2022. [DOI: 10.1039/d2ce01301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study constructs a POM-based crystalline material of [(SiMo12O40)Cu6(2,2′-bipy)6(Mo6O22)] (1). The photocatalytic MB degradation and electrocatalytic nitrite reduction properties of complex 1 are systematically studied for the first time.
Collapse
Affiliation(s)
- Peisen Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Aadil Nabi Chishti
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zengxiang Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yaya Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hanzhi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Junjie Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lu-nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongge Wei
- Key lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
Zhang XJ, Ma YY, Bi HX, Yin XY, Song H, Liu MH, Han ZG. Wheel-shaped molybdenum( v) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr( vi) and tetracycline. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A wheel-shaped {Co16Mo16P24} cluster-based 3-D crystal framework serves as an efficient bifunctional photoelectrochemical sensor for the trace determination of Cr(vi) and tetracycline.
Collapse
Affiliation(s)
- Xiu-Juan Zhang
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yuan-Yuan Ma
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao-Xue Bi
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xiao-Yu Yin
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao Song
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Man-Hui Liu
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zhan-Gang Han
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| |
Collapse
|