1
|
Bie T, Li R, Gao X, Yang L, Ma P, Zhang D, Xue Y, Wen J, Wang Z, Ma X, Shao M. Halogen-Functionalized Hole Transport Materials with Strong Passivation Effects for Stable and Highly Efficient Quasi-2D Perovskite Solar Cells. ACS NANO 2024; 18:23615-23624. [PMID: 39149797 DOI: 10.1021/acsnano.4c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The performance of quasi-two-dimensional (Q-2D) perovskite solar cells (PSCs) strongly depends on the interface characteristics between the hole transport material (HTM) and the perovskite layer. In this work, we designed and synthesized a series of HTMs with triphenylamine-carbazole as the core structure and modified end groups with chlorine and bromine atoms. These HTMs show deeper highest occupied molecular orbital energy levels than commercial HTMs. This reduced energy band mismatch between the HTM and perovskite layer facilitates efficient charge extraction at the interface. Moreover, these HTMs containing halogen atoms on the end groups could form halogen bonding with the Pb2+ ions at the buried interface of the perovskite layer, effectively passivating defects to suppress nonradiative recombination. Additionally, halogen bonding also contributes to the formation of vertically oriented perovskite crystals with a high quality. By incorporation of chlorohexane-substituted HTMs, the resultant Q-2D PSCs exhibited the highest power conversion efficiency of 21.07%. Furthermore, the devices show improved stability, retaining 97.2% of their initial efficiency after 1100 h of continuous illumination.
Collapse
Affiliation(s)
- Tong Bie
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Gao
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peiyu Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yazhuo Xue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xueqing Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Gao X, Sun F, Tong X, Zheng X, Wang Y, Xiao C, Li P, Yang R, Wang X, Liu Z. Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells. FRONTIERS OF OPTOELECTRONICS 2023; 16:8. [PMID: 37087536 PMCID: PMC10122612 DOI: 10.1007/s12200-023-00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Single perylene diimide (PDI) used as a non-fullerene acceptor (NFA) in organic solar cells (OSCs) is enticing because of its low cost and excellent stability. To improve the photovoltaic performance, it is vital to narrow the bandgap and regulate the stacking behavior. To address this challenge, we synthesize soluble perylenetetracarboxylic bisbenzimidazole (PTCBI) molecules with a bulky side chain at the bay region, by replacing the widely used "swallow tail" type alkyl chains at the imide position of PDI molecules with a planar benzimidazole structure. Compared with PDI molecules, PTCBI molecules exhibit red-shifted UV-vis absorption spectra with larger extinction coefficient, and one magnitude higher electron mobility. Finally, OSCs based on one soluble PTCBI-type NFA, namely MAS-7, exhibit a champion power conversion efficiency (PCE) of 4.34%, which is significantly higher than that of the corresponding PDI-based OSCs and is the highest PCE of PTCBI-based OSCs reported. These results highlight the potential of soluble PTCBI derivatives as NFAs in OSCs.
Collapse
Affiliation(s)
- Xiang Gao
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Fengbo Sun
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Xinzhu Tong
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xufan Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Yinuo Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cong Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Pengcheng Li
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China.
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Gao X, Tong X, Xu M, Zhang L, Wang Y, Liu Z, Yang L, Gao J, Shao M, Liu Z. Chlorinated Narrow Bandgap Polymer Suppresses Non-Radiative Recombination Energy Loss Enabling Perylene Diimides-Based Organic Solar Cells Exceeding 10% Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208217. [PMID: 37013462 DOI: 10.1002/smll.202208217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
The scarcity of narrow bandgap donor polymers matched with perylene diimides (PDI)-based nonfullerene acceptors (NFAs) hinders improvement of the power conversion efficiency (PCE) value of organic solar cells (OSCs). Here, it is reported that a narrow bandgap donor polymer PDX, the chlorinated derivative of the famous polymer donor PTB7-Th, blended with PDI-based NFA boosts the PCE value exceeding 10%. The electroluminescent quantum efficiency of PDX-based OSCs is two orders of magnitude higher than that of PTB7-Th-based OSCs;therefore, the nonradiative energy loss is 0.103 eV lower. This is the highest PCE value for OSCs with the lowest energy loss using the blend of PTB7-Th derivatives and PDI-based NFAs as the active layer. Besides, PDX-based devices showed larger phase separation, faster charge mobilities, higher exciton dissociation probability, suppressed charge recombination, elevated charge transfer state, and decreased energetic disorder compared with the PTB7-Th-based OSCs. All these factors contribute to the simultaneously improved short circuit current density, open circuit voltage, and fill factor, thus significantly improving PCE. These results prove that chlorinated conjugated side thienyl groups can efficiently suppress the non-radiative energy loss and highlight the importance of fine-modifying or developing novel narrow bandgap polymers to further elevate the PCE value of PDI-based OSCs.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xinzhu Tong
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Meichen Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Linhua Zhang
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yinuo Wang
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zhihao Liu
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianhong Gao
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhitian Liu
- Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Liu X, Jiang X, Wang K, Miao C, Zhang S. Recent Advances in Selenophene-Based Materials for Organic Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7883. [PMID: 36431369 PMCID: PMC9698888 DOI: 10.3390/ma15227883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Due to the low cost, light weight, semitransparency, good flexibility, and large manufacturing area of organic solar cells (OSCs), OSCs have the opportunity to become the next generation of solar cells in some specific applications. So far, the efficiency of the OSC device has been improved by more than 20%. The optical band gap between the lowest unoccupied molecular orbital (LUMO) level and the highest occupied molecular orbital (HOMO) level is an important factor affecting the performance of the device. Selenophene, a derivative of aromatic pentacyclic thiophene, is easy to polarize, its LUMO energy level is very low, and hence the optical band gap can be reduced. In addition, the selenium atoms in selenophene and other oxygen atoms or sulfur atoms can form an intermolecular interaction, so as to improve the stacking order of the active layer blend film and improve the carrier transport efficiency. This paper introduces the organic solar active layer materials containing selenium benzene in recent years, which can be simply divided into donor materials and acceptor materials. Replacing sulfur atoms with selenium atoms in these materials can effectively reduce the corresponding optical band gap of materials, improve the mutual solubility of donor recipient materials, and ultimately improve the device efficiency. Therefore, the sulfur in thiophene can be completely replaced by selenium or oxygen of the same family, which can be used in the active layer materials of organic solar cells. This article mainly describes the application of selenium instead of sulfur in OSCs.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Jiangsu Seenbom Flexible Electronics Institute Co., Ltd., Level 2 Building 5, Zhida Road 6, Nanjing 210043, China
| | - Xin Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Jiangsu Seenbom Flexible Electronics Institute Co., Ltd., Level 2 Building 5, Zhida Road 6, Nanjing 210043, China
| | - Kaifeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Jiangsu Seenbom Flexible Electronics Institute Co., Ltd., Level 2 Building 5, Zhida Road 6, Nanjing 210043, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Jiangsu Seenbom Flexible Electronics Institute Co., Ltd., Level 2 Building 5, Zhida Road 6, Nanjing 210043, China
| |
Collapse
|
5
|
Bao HY, Yang ZF, Zhao YJ, Gao X, Tong XZ, Wang YN, Sun FB, Gao JH, Li WW, Liu ZT. Chlorinated Effects of Double-Cable Conjugated Polymers on the Photovoltaic Performance in Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yu K, Song W, Ge J, Zheng K, Xie L, Chen Z, Qiu Y, Hong L, Liu C, Ge Z. 18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|