1
|
Li H, Zhang L, Li X, Wang YS, Han YF. Stimulus-Responsive Organometallic Assemblies Based on Azobenzene-Functionalized Poly-NHC Ligands. Chem Asian J 2025; 20:e202401421. [PMID: 39777425 DOI: 10.1002/asia.202401421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
The reversible photoisomerization of azobenzene (AZB) and its derivatives has been applied across various fields. Developing discrete AZB-functionalized organometallic cages is essential for manufacturing functional materials. In this work, we designed and fabricated a series of three-dimensional, hexaazobenzene-terminated poly-NHC-based (NHC=N-heterocyclic carbene) complexes [M3(A)2](BF4)3 and [M3(B)2](BF4)3 (M = Ag, Au). In the newly prepared MI-CNHC assemblies, these peripheral AZB units linked to the central backbones can undergo efficient and recyclable isomerization upon external stimulation, effectively creating a switchable organometallic assembly system. Compared to the NHC precursor, the metalized framework demonstrates higher isomerization efficiency, thereby establishing a foundation for the subsequent application of AZB-functionalized MI-CNHC assemblies.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Shou Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
2
|
Abstract
Metallacarboranes have attracted significant attention due to their unique properties. Considerable efforts have been made on the reactions around the metal centers or the metal ion itself, while transformations of functional groups of the metallacarboranes have been much less explored. We presented here the formation of imidazolium-functionalized nickelacarboranes (2), their subsequent conversion to nickelacarborane-supported N-heterocyclic carbenoids (NHCs, 3), and the reactivities of 3 toward Au(PPh3)Cl and Se powder, which resulted in the formation of bis-gold carbene complexes (4) and NHC selenium adducts (5). Cyclic voltammetry of 4 shows two reversible peaks, corresponding to the interconversion transformations NiII ↔ NiIII and NiIII ↔ NiIV. Theoretical calculations demonstrated relatively high-lying lone-pair orbitals, weak B-H···H-C interactions between the BH units and the methyl group, and weak B-H···π interactions between the BH groups and the vacant p-orbital of the carbene.
Collapse
Affiliation(s)
- Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Fan Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| |
Collapse
|
3
|
Bai S, Han YF. Metal- N-Heterocyclic Carbene Chemistry Directed toward Metallosupramolecular Synthesis and Beyond. Acc Chem Res 2023; 56:1213-1227. [PMID: 37126765 DOI: 10.1021/acs.accounts.3c00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ConspectusAs versatile, modular, and strongly coordinating moieties in organometallic compounds, N-heterocyclic carbenes (NHCs) have led to numerous breakthroughs in transition-metal catalysis, main group chemistry, and organocatalysis. In contrast, the chemistry of NHC-based metallosupramolecular assemblies, in which discrete individual components are held together via metal (M)-CNHC bonds, has been underdeveloped. Integrating NHCs into supramolecular assemblies would endow them with some unforeseen functions. However, one of the most critical challenges is seeking an appropriate combination of the rigid CNHC-M-CNHC units with the resulting topologies and applications. Toward this goal, for the last decade we have focused on the development of M-NHC directed toward metallosupramolecular synthesis. This Account aims to summarize our contributions to the application of M-NHC chemistry toward supramolecular synthesis from structural design to postassembly modification (PAM) and their functional applications since integrating NHCs into supramolecular assemblies has garnered much attention among organometallic, photochemical, and supramolecular researchers. While presenting representative examples of NHC-based architectures, we try to illustrate the purposes and concepts behind the systems developed to aid the rational approach to the design and fabrication of complex assemblies and M-NHC-templated photochemical reactions.We present synthetic approaches for new architectures by the rational design of starting NHC precursors, including the poly-NHC-based mechanically interlocked metallacages and the heteroleptic architectures based on electronic complementary and self-sorting mechanisms. The structural regulation of poly-NHC-based architectures with increasing topological complexity is elaborated on by selective combinations of tetraphenylethylene (TPE) units, NHC backbones, and N-wingtip substituents in a controllable manner.Subsequently, we move to elucidating an M-NHC-templated PAM approach that leads to functional organic cages featuring polyimidazolium/triazolium groups of different shapes and sizes that are difficult to access using alternative organic approaches. These organic cages possess well-defined cavities, and their in situ-generated NHC sites are ideal platforms for stabilizing metal nanoparticles (MNPs) within their cavities for improved catalytic performance.Finally, we demonstrate how to design supramolecular M-NHC templates to synthesize cyclobutane derivatives in homogeneous solutions in a catalytic fashion. Selected examples of M-NHC template-dependent structural transformations and photoreactions are discussed. Their applications in molecular recognition, aggregation-induced emission (AIE), cell imaging, anticancer activity, radical chemistry, and stimuli-responsive materials are also described.Taken together, M-NHC-templated approaches have proven to be powerful methods for constructing diverse architectures with functional applications. The development of this methodology is still in its infancy, with tremendous growth potential and a promising future. We believe that this Account will guide researchers to design fascinating and valuable M-carbene species for diverse applications.
Collapse
Affiliation(s)
- Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
4
|
Trefoil-shaped metallacycle and metallacage via heteroleptic self-assembly. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Gan MM, Wang F, Li X, Sun LY, Yuan G, Han YF. Formation of Metallosupramolecular Helicates and Mesocates from Poly- N-Heterocyclic Carbene Ligands. Inorg Chem 2023; 62:2599-2606. [PMID: 36474312 DOI: 10.1021/acs.inorgchem.2c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a series of poly-NHC-based tetranuclear silver helicates and mesocates were synthesized from the silver-mediated self-assembly of the ligands involving multiple tridentate CNC-type pincer units and NHC coordination sites. The silver helicate was found to be transferred to a gold mesocate upon metal exchange reaction. The metallosupramolecular helicates and mesocates have been fully characterized by single-crystal X-ray crystallography, mass spectrometry, and multinuclear nuclear magnetic resonance spectroscopies. This study provides an example of the selective preparation of poly-NHC-based helicates or mesocates depending on the size of metal ions and the steric effect of ligands.
Collapse
Affiliation(s)
- Ming-Ming Gan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Wang YS, Li H, Bai S, Wang YY, Han YF. N-Heterocyclic carbene-stabilized platinum nanoparticles within a porphyrinic nanocage for selective photooxidation. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Lai Z, Shi X, Cai M, Zhou W, He Q. Advances in trimacrocyclic hexasubstituted benzenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|