1
|
Zhu Q, Chen Z, Fu T, Lin Y, Lan X, Xiao J, Liu L. ZC3H13 Regulates Ferroptosis to Enhance Osteogenic Differentiation in Osteoporotic BMSCs. Tissue Eng Part A 2025. [PMID: 40130382 DOI: 10.1089/ten.tea.2024.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Objectives: N6-methyladenosine (m6A) modification is critical in the regulation of osteoporosis (OP). Although ZC3H13 is an important m6A methyltransferase, its specific regulatory effects and mechanisms in osteoporosis are not yet fully understood. Therefore, we investigated the impact of ZC3H13 on the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMSCs) in osteoporosis and attempted to elucidate its underlying mechanism. Materials and Methods: Western blotting, quantitative reverse transcription polymerase chain reaction, and immunohistochemical staining were used to identify changes in ZC3H13 and osteogenic factor (RUNX2 and OPN) expression in osteoporosis. Gain- and loss-of-function experiments were conducted to study the impact of ZC3H13 on the osteogenic differentiation of osteoporotic BMSCs (OP-BMSCs). Transcriptomic sequencing, transmission electron microscopy, and intraperitoneal injection of the ferroptosis inhibitor ferrostatin-1 (Fer-1) were used to elucidate the downstream mechanisms regulated by ZC3H13 in osteoporosis. In addition, rescue assays were performed to elucidate the underlying molecular mechanisms involved. Results: Here, we revealed that ZC3H13 was downregulated in OP-BMSCs and osteoporotic rat femurs, which correlated with the reduced osteogenic differentiation of OP-BMSCs. Functionally, ZC3H13 knockdown resulted in decreased osteogenic differentiation of the BMSCs, whereas ZC3H13 overexpression promoted the osteogenic differentiation of the OP-BMSCs. Furthermore, ZC3H13 knockdown was closely related to metal ion binding, reduced cell proliferation, and altered mitochondrial morphology. Treatment with the ferroptosis inhibitor Fer-1 partially reversed osteoporotic phenotypes in vivo. Mechanistically, ZC3H13 was shown to promote osteogenic differentiation in OP-BMSCs by inhibiting ferroptosis. Conclusions: Our study revealed that ZC3H13 promoted the osteogenic differentiation of BMSCs by inhibiting ferroptosis in osteoporosis. This research offers a reliable theoretical foundation for predicting and treating osteoporosis.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Zhezheng Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Ting Fu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Ya Lin
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| |
Collapse
|
2
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Chen L, Liu M, Wang Y, Wei W, Li Y, Bai Y, Yu X, Jiao L, Wang M. TME-Activated MnO 2/Pt Nanoplatform of Hydroxyl Radical and Oxygen Generation to Synergistically Promote Radiotherapy and MR Imaging of Glioblastoma. Int J Nanomedicine 2024; 19:11055-11070. [PMID: 39502635 PMCID: PMC11537150 DOI: 10.2147/ijn.s474098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Radiotherapy (RT) is currently recognized as an important treatment for glioblastoma (GBM), however, it is associated with several challenges. One of these challenges is the radioresistance caused by hypoxia, whereas the other is the low conversion efficiency of the strongly oxidized hydroxyl radical (•OH), which is produced by the decomposition of water due to high-energy X-ray radiation. These factors significantly limit the clinical effectiveness of radiotherapy. Results To address these limitations, we developed a highly stable and efficient nanoplatform (MnO2/Pt@BSA). Compared to MnO2@BSA, this platform demonstrates high stability, a high yield of oxygen (O2), enhanced production of •OH, and reduced clearance of •OH. The system exhibited increased O2 production in vitro and significantly improved oxygen production efficiency within 100 s at the Pt loading of 38.7%. Furthermore, compared with MnO2, the expression rate of hypoxia-inducible factor (HIF-1α) in glioma cells treated with MnO2/Pt decreased by half. Additionally, the system promotes •OH generation and consumes glutathione (GSH), thereby inhibiting the clearance of •OH and enhancing its therapeutic effect. Moreover, the degradation of the nanoplatform produces Mn2+, which serves as a magnetic resonance imaging (MRI) contrast agent with a T1-weighted enhancement effect at the tumor site. The nanoplatform exhibited excellent biocompatibility and performed multiple functions related to radiotherapy, with simpler components. In U87 tumor bearing mice model, we utilized MnO2/Pt nanocatalysis to enhance the therapeutic effect of radiotherapy on GBM. Conclusion This approach represents a novel and effective strategy for enhancing radiotherapy in gliomas, thereby advancing the field of catalytic radiotherapy and glioma treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Mingbo Liu
- Department of Radiotherapy, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Yunjuan Wang
- School of Life Sciences, Henan University, North Section of Jinming Avenue, Kaifeng, Henan, 475004, People’s Republic of China
- Institute of Biomedicine, Henan Academy of Sciences, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Yaqiong Li
- Department of Pharmacy, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Yan Bai
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, People’s Republic of China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
- Institute of Biomedicine, Henan Academy of Sciences, Zhengzhou, Henan, 450046, People’s Republic of China
| |
Collapse
|
4
|
Yao Y, Chen Y, Zhou C, Zhang Q, He X, Dong K, Yang C, Chu B, Qian Z. Bioorthogonal chemistry-based prodrug strategies for enhanced biosafety in tumor treatments: current progress and challenges. J Mater Chem B 2024; 12:10818-10834. [PMID: 39352785 DOI: 10.1039/d4tb01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting. However, subtle differences in the microenvironments between tumors and normal tissue may still result in unintended cytotoxicity. Bioorthogonal reactions, known for their selectivity and precision without interfering with natural biochemical processes, are gaining attention. When combined with prodrug strategies, these reactions offer the potential to create highly effective chemotherapy drugs. This review examines the safety and efficacy of prodrug strategies utilizing various bioorthogonal reactions in cancer treatment.
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Quanzhi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xun He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Niu X, Yang H, Wu X, Huo F, Ma K, Yin C. A thiol-triggered croconaine-chromene integration to induce ferroptosis and photothermal synergistic efficient tumor ablation. Chem Sci 2024:d4sc03688c. [PMID: 39246356 PMCID: PMC11376015 DOI: 10.1039/d4sc03688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Theranostic probes, combining diagnostic and treatment capabilities, have emerged as promising tools in tumor precision medicine. However, existing probes with constant fluorescence and photothermal activity can result in low signal-to-background ratios and phototoxicity. In this study, we introduced CM-Croc, a novel probe comprised of chromene and croconaine, selectively triggered by thiol. CM-Croc exhibited turn-on fluorescence and released croconaine for photothermal therapy. The croconaine moiety possesses high photothermal conversion efficiency up to 55%. Besides, it demonstrated potent activity against various cancer cell lines at low micromolar concentrations, including drug-resistant variants, through enhanced photothermal therapy combined with the ferroptosis effect. What's more, CM-Croc was proved to inhibit the activity of GPX4 to induce ferroptosis. Finally, CM-Croc was demonstrated to be the first croconaine-derived SOP, which targeted tumors and significantly inhibited tumor growth in vivo following intravenous administration with irradiation. This study showed CM-Croc's potential for enhancing tumor precision medicine.
Collapse
Affiliation(s)
- Xinya Niu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan 030006 China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
- Zhendong Research Institute, Shanxi-Zhendong Pharmaceutical Co., Ltd Changzhi 047100 China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
6
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
7
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
8
|
Zong L, Xu H, Zhang H, Tu Z, Zhang X, Wang S, Li M, Feng Y, Wang B, Li L, Xie X, He Z, Pu X. A review of matrix metalloproteinase-2-sensitive nanoparticles as a novel drug delivery for tumor therapy. Int J Biol Macromol 2024; 262:130043. [PMID: 38340921 DOI: 10.1016/j.ijbiomac.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hongliang Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ziwei Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Zhang
- Department of Pharmacy, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai City, Hebei Province 054001, China
| | - Shumin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Meigui Li
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Yu Feng
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Luhui Li
- Medical School, Henan Technical Institute, Kaifeng, Henan 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China.
| | - Zhonggui He
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China.
| |
Collapse
|
9
|
Li X, Niu J, Deng L, Yu Y, Zhang L, Chen Q, Zhao J, Wang B, Gao H. Amphiphilic polymeric nanodrug integrated with superparamagnetic iron oxide nanoparticles for synergistic antibacterial and antitumor therapy of colorectal cancer. Acta Biomater 2024; 173:432-441. [PMID: 37984629 DOI: 10.1016/j.actbio.2023.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies that can be influenced by Fusobacterium nucleatum (Fn), a bacterium that promotes tumor development and chemoresistance, resulting in limited therapeutic efficacy. Traditional antibiotics cannot effectively eliminate Fn at tumor site due to issues like biofilm formation, while chemotherapy alone fails to suppress tumor progression. Therefore, the development of new methods to eliminate Fn and promote antitumor efficacy is of great significance for improving the outcome of CRC treatment. Herein, we developed a nanodrug (OPPL) that integrates oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) and an amphiphilic polymer (PPL) to deliver the platinum prodrug and antimicrobial lauric acid (LA) for enhancing the treatment of CRC. We demonstrated that OPPL can synergistically enhance antibacterial and biofilm disruption activities against Fn along with the antimicrobial LA by producing reactive oxygen species (ROS) through its peroxidase-like activity. Furthermore, the OPPL nanodrug can increase intracellular ROS, promote lipid peroxides and deplete glutathione, leading to ferroptosis. By combining chemotherapy and induced ferroptosis, the OPPL nanodrug exhibited high cytotoxicity against CRC cells. In vivo studies showed that the OPPL nanodrug could enhance tumor accumulation, enable magnetic resonance imaging, suppresse tumor growth, and inhibit growth of intratumor Fn. These results suggest that OPPL is an effective and promising candidate for the treatment of Fn-infected CRC. STATEMENT OF SIGNIFICANCE: The enrichment of Fusobacterium nucleatum (Fn) in colorectal cancer is reported to exacerbate tumor malignancy and is particularly responsible for chemoresistance. To this respect, we strategically elaborated multifaceted therapeutics, namely OPPL nanodrug, combining oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) with a polymer containing a platinum prodrug and antimicrobial lauric acid. The O-SPION components exert distinctive peroxidase-like activity, capable of stimulating Fenton reactions selectively in the tumor microenvironment, consequently accounting for the progressive production of reactive oxygen species. Hence, O-SPIONs have been demonstrated to not only supplement the antimicrobial activities of lauric acid in overcoming Fn-induced chemoresistance but also stimulate potent tumor ferroptosis. Our proposed dual antimicrobial and chemotherapeutic nanodrug provides an appreciable strategy for managing challenging Fn-infected colorectal cancer.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jiazhen Niu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lingling Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
10
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
11
|
Fan R, Chen C, Mu M, Chuan D, Liu H, Hou H, Huang J, Tong A, Guo G, Xu J. Engineering MMP-2 Activated Nanoparticles Carrying B7-H3 Bispecific Antibodies for Ferroptosis-Enhanced Glioblastoma Immunotherapy. ACS NANO 2023; 17:9126-9139. [PMID: 37097811 DOI: 10.1021/acsnano.2c12217] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Administration of bispecific antibodies (biAbs) in tumor therapy is limited by their short half-life and off-target toxicity. Optimized strategies or targets are needed to overcome these barriers. B7-H3 (CD276), a member of the B7 superfamily, is associated with poor survival in glioblastoma (GBM) patients. Moreover, a dimer of EGCG (dEGCG) synthesized in this work enhanced the IFN-γ-induced ferroptosis of tumor cells in vitro and in vivo. Herein, we prepared recombinant anti-B7-H3×CD3 biAbs and constructed MMP-2-sensitive S-biAb/dEGCG@NPs to offer a combination treatment strategy for efficient and systemic GBM elimination. Given their GBM targeted delivery and tumor microenvironment responsiveness, S-biAb/dEGCG@NPs displayed enhanced intracranial accumulation, 4.1-, 9.5-, and 12.3-fold higher than that of biAb/dEGCG@NPs, biAb/dEGCG complexes, and free biAbs, respectively. Furthermore, 50% of GBM-bearing mice in the S-biAb/dEGCG@NP group survived longer than 56 days. Overall, S-biAb/dEGCG@NPs can induce GBM elimination by boosting the ferroptosis effect and enhancing immune checkpoint blockade (ICB) immunotherapy and may be successful antibody nanocarriers for enhanced cancer therapy.
Collapse
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Caili Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P. R. China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Hao Liu
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Huan Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Jianhan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Zhang R, Nie T, Wang L, He D, Kang Y, Zhang C, Wu J. Facile synthesis of poly(disulfide)s through one-step oxidation polymerization for redox-responsive drug delivery. Biomater Sci 2023. [PMID: 37144301 DOI: 10.1039/d3bm00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Poly(disulfide)s-based systems with repetitive disulfide bonds in their backbones are emerging as promising tumor microenvironment responsive platforms for drug delivery. However, complicated synthesis and purification processes have restricted their further application. Herein, we developed redox-responsive poly(disulfide)s (PBDBM) by one-step oxidation polymerization of a commercially available monomer, 1,4-butanediol bis(thioglycolate) (BDBM). PBDBM can self-assemble with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)3400 (DSPE-PEG3.4k) by the nanoprecipitation method and be formulated into PBDBM NPs (sub 100 nm). It can also be loaded with docetaxel (DTX), a first-line chemotherapy agent for breast cancer, to form DTX@PBDBM NPs with a loading capacity of 6.13%. DTX@PBDBM NPs with favorable size stability and redox-responsive capability exhibit superior antitumor activity in vitro. In addition, owing to the different glutathione (GSH) levels in normal and tumor cells, PBDBM NPs with disulfide bonds could synergistically increase intracellular ROS levels, further inducing apoptosis and cell cycle arrest in the G2/M phase. Moreover, in vivo studies revealed that PBDBM NPs could accumulate in tumors, suppress 4T1 tumor growth, and significantly attenuate the systemic toxicity of DTX. Thus, a novel redox-responsive poly(disulfide)s nanocarrier was successfully and facilely developed for cancer drug delivery and effective breast cancer therapy.
Collapse
Affiliation(s)
- Ruhe Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Tianqi Nie
- Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Danni He
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
13
|
Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Deng FA, Yan MY, Liu YB, Yu BX, Huang JQ, Wang C, Cheng H, Li SY. Plasma Membrane-Targeted Photooxidant for Chemotherapy-Enhanced Lipid Peroxidation. ACS APPLIED BIO MATERIALS 2022; 5:4523-4530. [PMID: 35999814 DOI: 10.1021/acsabm.2c00597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although photodynamic therapy (PDT) is a promising antitumor strategy for tumor treatment, the short half-life and the limited diffusion distance of reactive oxygen species (ROS) greatly hamper its antitumor efficacy. Moreover, tumor cells develop antioxidative microenvironments to weaken the oxidative damage caused by PDT. Herein, a plasma membrane-targeted photooxidant (designated as SCPP) is prepared by the self-assembly of a chimeric peptide (Pal-K(PpIX)-R4) and sorafenib. Plasma membrane-targeted SCPP could enhance lipid peroxidation (LPO) through in situ PDT upon light irradiation. Moreover, sorafenib-mediated chemotherapy could block cystine/glutamate antiporter xCT (SLC7A11) to inhibit the syntheses of intracellular GSH and glutathione peroxidase 4 (GPX4), which would destroy the antioxidant defense system of tumors. As a consequence, SCPP achieves a highly efficient tumor inhibition through enhanced PDT and ferroptosis therapy. This study might provide guidance for multisynergistic tumor therapy with a sophisticated mechanism under unfavorable conditions.
Collapse
Affiliation(s)
- Fu-An Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meng-Yi Yan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yi-Bin Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bai-Xue Yu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Chang Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shi-Ying Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|