1
|
Zhang Y, Li X, Ji B, Li B, Xiong J, Liu P, Ma C, Wang C, Xu S, Wang Q. Synthesis of Bismuth Niobate Nanoparticles Rich in Oxygen Vacancies and Efficient Degradation of Tetracycline Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9810-9820. [PMID: 40195032 DOI: 10.1021/acs.langmuir.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
With the increasing energy crisis and environmental pollution problems, the development of solar-powered photocatalytic technologies for green and efficient removal of emerging pollutants from aquatic ecosystems has become an urgent need. Bismuth niobate (Bi3NbO7), as a bismuth-based photocatalyst, has attracted much attention due to its unique electronic structure and optical properties. However, Bi3NbO7 synthesized by the traditional hydrothermal method suffers from the problems of large size, limited active sites, and harsh preparation conditions, which severely limit its photocatalytic performance. In this study, small-sized Bi3NbO7 nanoparticles (BNO-Ov-3) enriched with oxygen vacancies were successfully synthesized by a one-step solvothermal method using ethylene glycol as the solvent and structure-directing agent. Glycol not only inhibited the grain growth and reduced the size from micrometers to nanometers, but also promoted the formation of oxygen vacancies through its reducing property. Compared with Bi3NbO7 synthesized by the conventional hydrothermal method, BNO-Ov-3 enhanced the degradation rate of tetracycline hydrochloride (TC) from 49.8% to 92.1% under visible light irradiation. The mechanism of the performance enhancement was revealed by XPS, EPR, and PL characterization: the synergistic effect of nanosize and oxygen vacancies effectively inhibited the photogenerated carrier complexation and promoted charge separation and transfer. This study provides a strategy for the controlled synthesis of bismuth niobate and lays a theoretical foundation for its application in photocatalysis.
Collapse
Affiliation(s)
- Yaru Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xicheng Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Bicheng Ji
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Biqiu Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Junfu Xiong
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Pengyuan Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chenchen Ma
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Changzheng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shoufang Xu
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials & College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
2
|
He S, Xie D, Wang B, Zhu M, Hu S. Photocatalytic fuel cell based on integrated silicon nanowire arrays/zinc oxide heterojunction anode for simultaneous wastewater treatment and electricity production. J Colloid Interface Sci 2023; 650:1993-2002. [PMID: 37531666 DOI: 10.1016/j.jcis.2023.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Photocatalytic fuel cells (PFCs) convert organic waste into electricity, thereby providing a potential solution for remediating environmental pollution and solving energy crises. Most PFCs for energy generation applications use powder photocatalysts, which have poor mechanical stability, high internal resistance, and may detach from the substrate during reactions, leading to unstable performance. Integrated photoelectrodes can overcome the drawbacks of powder catalysts. In this study, an integrated photoanode was prepared based on a silicon nanowire arrays/zinc oxide (Si NWs/ZnO) heterojunction by combining metal-assisted chemical etching (MACE) and hydrothermal methods. The resulting photoanode was used to assemble a PFC for simultaneous electricity generation and Rhodamine (RhB) dye wastewater degradation. This PFC showed excellent cell performance under irradiation, with a short-circuit current density of 0.183 Am-2, an open-circuit voltage (OCV) of 0.72 V, and a maximum power density of 0.87 W m-2. It could also be used continuously 20 times while degrading > 90% of RhB. This performance was ascribed to the three-dimensional (3D) structure and large surface area of Si NWs, as well as the matched band structure of ZnO, which facilitated the efficient separation and transport of photogenerated carriers in Si NWs/ZnO. The integrated structure also shortened the carrier transport pathways and suppressed carrier recombination. This research provides a foundation for the development of efficient, stable, low-cost, small-scale PFCs.
Collapse
Affiliation(s)
- Shenglin He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Dongxue Xie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; College of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Baoling Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 511443, China
| | - Sujuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| |
Collapse
|
3
|
Yap CTJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, Lin H. Treatment of diluted palm oil mill effluent (POME) synchronous with electricity production in a persulfate oxidant-promoted photocatalytic fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96272-96289. [PMID: 37566326 DOI: 10.1007/s11356-023-29165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
Collapse
Affiliation(s)
- Chun-Ting Joyee Yap
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sze-Mun Lam
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Jin-Chung Sin
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
4
|
Gao S, Ji H, Yang P, Guo M, Tressel J, Chen S, Wang Q. High-Performance Photocatalytic Reduction of Nitrogen to Ammonia Driven by Oxygen Vacancy and Ferroelectric Polarization Field of SrBi 4 Ti 4 O 15 Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206114. [PMID: 36412072 DOI: 10.1002/smll.202206114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Photo-responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low-temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4 Ti4 O15 (SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g-1 h-1 , without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self-polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2 adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts.
Collapse
Affiliation(s)
- Shuai Gao
- Laboratory for Micro-sized Functional Materials and College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Haodong Ji
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Peng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China
| | - Ming Guo
- Laboratory for Micro-sized Functional Materials and College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - John Tressel
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials and College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
5
|
Ong YP, Ho LN, Ong SA, Ibrahim AH, Banjuraizah J, Thor SH, Lee SL, Teoh TP. UVA-irradiated dual photoanodes and dual cathodes photocatalytic fuel cell: mechanisms and Reactive Red 120 degradation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81368-81382. [PMID: 35729394 DOI: 10.1007/s11356-022-21413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
To enhance dye removal and energy recovery efficiencies in single-pair electrode photocatalytic fuel cell (PFC-AC), dual cathodes PFC (PFC-ACC) and dual photoanodes PFC (PFC-AAC) were established. Results revealed that PFC-AAC yielded the highest decolorization rate (1.44 h-1) due to the promotion of active species such as superoxide radical (•O2-) and hydroxyl radical (•OH) when the number of photoanode was doubled. The results from scavenging test and UV-Vis spectrophotometry disclosed that •OH was the primary active species in dye degradation of PFC. Additionally, PFC-AAC also exhibited the highest power output (17.99 μW) but the experimental power output was much lower than the theoretical power output (28.24 μW) due to the strong competition of electron donors of doubled photoanodes to electron acceptors at the single cathode and its high internal resistance. Besides, it was found that the increments of dye volume and initial dye concentration decreased the decolorization rate but increased the power output due to the higher amount of sacrificial agents presented in PFC. Based on the abovementioned findings and the respective dye intermediate products identified from gas chromatography-mass spectrometry (GC-MS), the possible degradation pathway of RR120 was scrutinized and proposed.
Collapse
Affiliation(s)
- Yong-Por Ong
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Abdul Haqi Ibrahim
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Johar Banjuraizah
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Shen-Hui Thor
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sin-Li Lee
- School of Applied Sciences, Faculty of Integrated Life Sciences, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Tean-Peng Teoh
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
6
|
Di K, Fan B, Gu X, Huang R, Khan A, Liu C, Shen H, Li Z. Highly efficient and automated isolation technology for extracellular vesicles microRNA. Front Bioeng Biotechnol 2022; 10:948757. [PMID: 36032725 PMCID: PMC9399425 DOI: 10.3389/fbioe.2022.948757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) in extracellular vesicles (EVs) has great potential to be a promising marker in liquid biopsy. However, the present EV isolation methods, such as ultracentrifugation, have complicated and long-time operation, which impedes research on EV miRNA. The downstream complex miRNA extraction process will also significantly increase the detection cycle and loss. We first established a simple automated technique to efficiently extract target miRNAs in EVs from plasma based on Fe3O4@TiO2 beads with high affinity and capture efficiency. We combined a heat-lysis method for quick and simple EV miRNA extraction and detection. The results indicated that our method has more RNA yield than TRIzol or a commercial kit and could complete EV enrichment and miRNA extraction in 30 min. Through the detection of miRNA-21, healthy people and lung cancer patients were distinguished, which verified the possibility of the application in clinical detection. The automated isolation technology for EV miRNA has good repeatability and high throughput, with great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongrong Huang
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chang Liu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Han Shen, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Han Shen, ; Zhiyang Li,
| |
Collapse
|