1
|
Chen KQ, Zhang J, Chen XB, Sun DQ. Halogen Bonding Promoted Photoinduced Synthesis of 3,3-Disubstituted Oxindoles. J Org Chem 2025; 90:6318-6322. [PMID: 40275433 DOI: 10.1021/acs.joc.4c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A photoinduced and catalyst-free radical cyclization process for the synthesis of 3,3-disubstituted oxindoles is reported. This method utilizes readily available α-bromoanilides as substrates, showcasing a broad substrate scope. The reaction mechanism is facilitated by a photoactivated charge transfer complex based on the halogen bonding of α-bromoanilide with TMG and alcohol.
Collapse
Affiliation(s)
- Kun-Quan Chen
- School of Pharmacy and Medical Technology, Putian University, Key Laboratory of Medical Microecology (Putian University), Putian 351100, China
| | - Jia Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiao-Bo Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Wu XD, Wang L, Tao JY, Liu ZY, Liu Z, Gao C, Shen DP, Zhang Y, Zhao LL, Zhao K. Photoredox-Catalyzed Direct C(sp 2)-H Difluoromethylation of Hydrazones with Difluoromethyltriphenylphosphonium Salt via Aminyl Radical/Polar Crossover. Org Lett 2025; 27:4176-4182. [PMID: 40208009 DOI: 10.1021/acs.orglett.5c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
This study describes an efficacious and generally applicable synthetic strategy for the incorporation of biologically and physiologically prominent difluoromethyl entity into synthetically crucial hydrazone scaffolds with bench-stable and easily accessible difluoromethyltriphenylphosphonium bromide. The broad substrate scope, excellent functional group compatibility, feasibility of step and atom economical one-pot synthetic manipulation, and environmentally benign and mild reaction conditions rendered this methodology an efficient tool for the preparation of synthetically and pharmaceutically prominent fluorine-containing imino compounds.
Collapse
Affiliation(s)
- Xiao-Di Wu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Li Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen-Yu Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zeng Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Gao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong-Ping Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Li Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Liu Q, Zhang BB, Zhang CS, Han JN, Wang ZX, Chen XY. Pnictogen bonding enabled photosynthesis of chiral selenium-containing pyridines from pyridylphosphonium salts. FUNDAMENTAL RESEARCH 2025; 5:654-662. [PMID: 40242517 PMCID: PMC11997580 DOI: 10.1016/j.fmre.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2025] Open
Abstract
Pyridylphosphonium salts, which are readily available and air and thermally stable, have been used to effectively synthesize structurally diverse pyridines. Herein, we report the pnictogen bonding (PnB) enabled photoactivation of pyridylphosphonium salts with catalytic potassium carbonate to generate pyridyl radical for pyridine synthesis. Remarkably, this light-driven transformation allowed chiral pool synthesis with excellent chirality retention, giving a wide range of chiral selenium-containing pyridines. On the basis of our combined computational and experimental studies, we propose that the PnB between pyridylphosphonium salts and potassium carbonate enables access to the photoactive charge transfer complex, which is able to undergo single electron transfer to generate pyridyl radical for its transformation.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Nan Han
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
4
|
Zhao Q, Telu S, Lu S, Pike VW. Expanding tracer space for positron emission tomography with high molar activity 18F-labeled α,α-difluoromethylalkanes. Nat Commun 2025; 16:1608. [PMID: 39948078 PMCID: PMC11825696 DOI: 10.1038/s41467-025-56897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Positron emission tomography (PET) is an advanced biomedical imaging modality that relies on well-designed radiotracers to report on specific protein targets and processes occurring in living animals and humans. Cyclotron-produced short-lived fluorine-18 (t1/2 = 109.8 min) is widely used to radiolabel tracers for PET. Herein we aim to expand the chemical space available for PET tracer development to include structures with 18F-labeled α,α-difluoromethylalkyl groups. We report an efficient and broad-scope method for labeling such groups with high molar activities based on a single-step radiofluorination of α-bromo-α-fluoroalkanes. The method is applicable to bioactive compounds and drug-like molecules, and is readily automated for radiotracer production. The unique physical and biochemical features of the α,α-difluoromethyl group can now be exploited in the design of new PET tracers.
Collapse
Affiliation(s)
- Qunchao Zhao
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA.
| |
Collapse
|
5
|
Song S, Wang W, He Y, Cheng X, Chen Z, Zhou J, Li J. N-Phenylphenothiazine-based Hyper-cross-linked Polymers for Recyclable, Heterogeneous Photocatalysis of Organic Transformations: A Strategy to Access 6-Difluoromethyl-phenanthridines. Org Lett 2025; 27:1136-1141. [PMID: 39848622 DOI: 10.1021/acs.orglett.4c04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Herein, a N-phenylphenothiazine-based hyper-cross-linked polymer (PTH-HCP) was finely designed and constructed, which serves as a metal-free heterogeneous photocatalyst for organic transformations. Characterization experiments have shown that this polymer demonstrates outstanding stability, extensive surface area, and exceptional photoelectric response properties. Moreover, PTH-HCP showed good catalytic efficiency and recyclability in the photochemically driven difluoromethylation/cyclization reactions. This work provides a strategy for the design and construction of polymer photocatalysts and offers support for their broad prospects in synthetic applications.
Collapse
Affiliation(s)
- Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenjian Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yali He
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoye Cheng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
6
|
Behera M, Dharpure PD, Sahu AK, Bhat RG. Visible Light-Induced Organophotoredox-Catalyzed β-Hydroxytrifluoromethylation of Unactivated Alkenes. J Org Chem 2024; 89:14695-14709. [PMID: 39380340 DOI: 10.1021/acs.joc.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we report a mild transition metal-free organophotoredox-catalyzed approach for β-hydroxytrifluoromethylation of unactivated alkenes using CF3SO2Na and acridinium salt. The protocol is compatible with various mono-, di-, and trisubstituted aliphatic unactivated alkenes containing numerous functional groups and natural product derivatives. Further, the postsynthetic modifications of the synthesized trifluoromethylated products have been demonstrated through cross-coupling and functional group interconversion reactions. The method proved to be scalable and it works smoothly under the direct exposure of sunlight. A plausible mechanism has been proposed based on the fluorescence quenching experiment and cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ajit K Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
7
|
Fang CZ, Zhang BB, Tu YL, Liu Q, Wang ZX, Chen XY. Radical Replacement Process for Ligated Boryl Radical-Mediated Activation of Unactivated Alkyl Chlorides for C(sp 3)-C(sp 3) Bond Formation. J Am Chem Soc 2024; 146:26574-26584. [PMID: 39264946 DOI: 10.1021/jacs.4c10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The ligated boryl radical (LBR) has emerged as a potent tool for activating alkyl halides in radical transformations through halogen-atom transfer (XAT). However, unactivated alkyl chlorides still present an open challenge for this strategy. We herein describe a new activation mode of the LBR for the activation of unactivated alkyl chlorides to construct a C(sp3)-C(sp3) bond. Mechanistic studies reveal that the success of the protocol relies on a radical replacement process between the LBR and unactivated alkyl chloride, forming an alkyl borane intermediate as the alkyl radical precursor. Aided with the additive K3PO4, the alkyl borane then undergoes one-electron oxidation, generating an alkyl radical. The incorporation of the radical replacement activation model to activate unactivated alkyl chlorides significantly enriches LBR chemistry, which has been applied to activate alkyl iodides, alkyl bromides, and activated alkyl chlorides via XAT.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Yong-Liang Tu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
8
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
9
|
Li S, Wang X, Yang Y, Ni C, Hu J. Divergent Generation of the Difluoroalkyl Radical and Difluorocarbene via Selective Cleavage of C-S Bonds of the Sulfox-CF 2SO 2Ph Reagent. Org Lett 2024; 26:872-876. [PMID: 38236716 DOI: 10.1021/acs.orglett.3c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A new difluoroalkylation reagent Sulfox-CF2SO2Ph bearing both sulfoximine and sulfone moieties was prepared from commercially available SulfoxFluor and PhSO2CF2H. On one hand, the Sulfox-CF2SO2Ph reagent could act as a (phenylsulfonyl)difluoromethyl radical source under photoredox catalysis, in which the arylsulfoximidoyl group is selectively removed. On the other hand, under basic conditions, Sulfox-CF2SO2Ph could serve as a difluorocarbene precursor for S- and O-difluoromethylations with S- and O-nucleophiles, respectively, in which the phenylsulfonyl group in Sulfox-CF2SO2Ph is selectively removed (followed by α-elimination of the arylsulfoximidoyl group).
Collapse
Affiliation(s)
- Shali Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Xiu Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yide Yang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Xie F, Han F, Yan Y, Li H, Hao J, Jing L, Han P. Difluoromethylation-Carboxylation and -Deuteration of Alkenes Triggered by Electroreduction of Difluoromethyltriphenylphosphonium Bromide. J Org Chem 2023. [PMID: 38056421 DOI: 10.1021/acs.joc.3c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
It is significant to develop novel difluoromethylation methods because of the important roles of difluoromethyl groups in the medicinal chemistry and material industries. Here, we developed a novel difluoromethylation-carboxylation and difluoromethylation-deuteration method triggered by a difluoromethyl radical generated by electroreduction of stable and easily available difluoromethyltriphenylphosphonium bromide. Various molecules containing difluoromethyl and carboxyl or deuterium groups can be synthesized through this method. The establishment of this method will provide an alternative to radical difluoromethylation reactions.
Collapse
Affiliation(s)
- Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
11
|
Tu YL, Zhang BB, Qiu BS, Wang ZX, Chen XY. Cross-Electrophile C-P III Coupling of Chlorophosphines with Organic Halides: Photoinduced P III and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202310764. [PMID: 37668107 DOI: 10.1002/anie.202310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Pnictogen bonding (PnB) has gained recognition as an appealing strategy for constructing novel architectures and unlocking new properties. Within the synthetic community, the development of a straightforward and much simpler protocol for cross-electrophile C-PIII coupling remains an ongoing challenge with organic halides. In this study, we present a simple strategy for photoinduced PnB-enabled cross-electrophile C-PIII couplings using readily available chlorophosphines and organic halides via merging single electron transfer (SET) and halogen atom transfer (XAT) processes. In this photomediated transformation, the PnB formed between chlorophosphines and alkyl amines facilitates the photogeneration of PIII radicals and α-aminoalkyl radicals through SET. Subsequently, the resulting α-aminoalkyl radicals activate C-X bonds via XAT, leading to the formation of carbon radicals. This methodology offers operational simplicity and compatibility with both aliphatic and aromatic chlorophosphines and organic halides.
Collapse
Affiliation(s)
- Yong-Liang Tu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Sheng Qiu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
12
|
Ren XJ, Liao PW, Sheng H, Wang ZX, Chen XY. N-Heterocyclic Nitrenium-Catalyzed Photohomolysis of CF 3SO 2Cl for Alkene Trifluoromethylation. Org Lett 2023; 25:6189-6194. [PMID: 37578296 DOI: 10.1021/acs.orglett.3c02380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
N-Heterocyclic nitreniums (NHNs) have been utilized as Lewis acid catalysts to activate substrates with lone pairs. Alternative to their conventional applications, we have discovered that NHNs can also serve as charge transfer complex catalysts. Herein, we present another potential of NHNs by utilizing a weak interaction between NHNs and CF3SO2Cl. The method promotes CF3SO2Cl to undergo photohomolysis, resulting in the CF3 radical. Mechanistic studies suggested that the weak interaction could be due to the π-hole effect of NHNs.
Collapse
Affiliation(s)
- Xiao-Jian Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Wei Liao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
13
|
Zhang QS, He L, Liu Q, Chen XY. Charge Transfer Complex-Enabled Synthesis of (Hetero)arylated m-Carboranes from m-Carborane Phosphonium Salts. Org Lett 2023; 25:5768-5773. [PMID: 37534925 DOI: 10.1021/acs.orglett.3c01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.
Collapse
Affiliation(s)
- Qing-Shuang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
14
|
Pan S, Chen F, Zhang Y, Shao L, Chu L. Nickel-Catalyzed Markovnikov-Selective Hydrodifluoromethylation of Alkynes Using BrCF 2 H. Angew Chem Int Ed Engl 2023; 62:e202305426. [PMID: 37293885 DOI: 10.1002/anie.202305426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2 H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2 H-coupling, enabling straightforward access to diverse branched CF2 H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.
Collapse
Affiliation(s)
- Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Liang Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Tang WX, Chen KQ, Sun DQ, Chen XY. Photoinduced halogen-bonding enabled synthesis of oxindoles and isoindolinones from aryl iodides. Org Biomol Chem 2023; 21:715-718. [PMID: 36412116 DOI: 10.1039/d2ob01818g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the use of halogen bonding (XB) for the generation of aryl radicals from aryl halides under blue light irradiation and applied it in radical generation/1,5-hydrogen-atom transfer/radical cyclization cascade reactions for the synthesis of oxindoles and isoindolinones. On the basis of experimental studies, we propose that DBU can serve as a suitable XB acceptor with aryl halides for the formation of a photoactive electron donor and acceptor complex.
Collapse
Affiliation(s)
- Wen-Xin Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. .,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, P. R. China
| |
Collapse
|
16
|
Li P, Liu Q, Sun DQ, Chen XY. Catalytic charge transfer complex enabled difluoromethylation of enamides with difluoromethyltriphenylphosphonium bromide. Org Biomol Chem 2022; 20:7599-7603. [PMID: 36148776 DOI: 10.1039/d2ob01539k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic charge transfer complex strategy that enabled difluoromethylation and ethoxycarbonylmonofluoromethylation of enamides with phosphonium bromine salts has been reported. This strategy also provides a convenient approach for the synthesis of functionalized oxindoles and 1,1-diphenylethylenes with easily available phosphonium bromine salts and a catalytic amount of iodine anion.
Collapse
Affiliation(s)
- Ping Li
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
17
|
Chen KQ, Zhang BB, Wang ZX, Chen XY. N-Heterocyclic Nitreniums Can Be Employed as Photoredox Catalysts for the Single-Electron Reduction of Aryl Halides. Org Lett 2022; 24:4598-4602. [PMID: 35709368 DOI: 10.1021/acs.orglett.2c01702] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Heterocyclic nitrenium (NHN) salts, the analogues of N-heterocyclic carbenes, have attracted considerable interest. However, relatively little is known about their catalytic ability beyond their Lewis acid catalysis. Herein, we describe that NHNs can serve as catalytic electron acceptors for charge transfer complex photoactivations. We showcase that, under blue light irradiation, the NHN salts could catalyze the generation of aryl radicals from aryl halides.
Collapse
Affiliation(s)
- Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Tan F, Zheng P, Liu Q, Chen XY. Charge Transfer Complex Enabled Photoreduction of Wittig Phosphonium Salts. Org Chem Front 2022. [DOI: 10.1039/d2qo01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoinduced charge transfer complex strategy enabled (alkoxycarbonyl)methylation reaction of alkenes with phosphonium salts has been reported. This strategy provides a convenient strategy to functionalize indoles, 1,1-diphenylethylenes, enamides and N-phenyl...
Collapse
|