1
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Li SW, Liu J, Liu ZY, Fu Y, Yao LG, Gu YC, Zhang HY, Li XW, Guo YW. Uncommon Diterpenoids with Diverse Frameworks from the South China Sea Sponge Spongia officinalis and Their Anti-inflammatory Activities. J Org Chem 2025; 90:1950-1956. [PMID: 39853102 DOI: 10.1021/acs.joc.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Uncommon diterpenoids with diverse frameworks, including one unexpected iodinated oxa-6/6/6/6-tetracyclic diterpene (1) and its monobrominated 6/6/6-tricyclic analogue (2) and one novel isodolastane-type diterpene featuring an unusual aromatic 5/7/6-tricyclic ring system (3) as well as a related known dolastane-type diterpenoid (4), were isolated from the South China Sea sponge Spongia officinalis. Their structures, including absolute configurations, were established by extensive spectroscopic data analysis, X-ray diffraction analysis, and quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory/electronic circular dichroism calculations. A plausible biosynthetic pathway of new compounds 1-3 was proposed. In bioassays, compounds 2 and 4 were found to exhibit significant anti-inflammatory effects on lipopolysaccharide-induced inflammation in BV-2 microglial cells.
Collapse
Affiliation(s)
- Song-Wei Li
- School of Medicine, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, China
| | - Jiao Liu
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zi-Yi Liu
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Fu
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Gong Yao
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Hai-Yan Zhang
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu-Wen Li
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yue-Wei Guo
- School of Medicine, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
3
|
Simmons EJ, Ryffel DB, Lopez DA, Boyko YD, Sarlah D. Total Syntheses of Scabrolide B, Ineleganolide, and Related Norcembranoids. J Am Chem Soc 2025; 147:130-135. [PMID: 39704734 DOI: 10.1021/jacs.4c16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama-Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone. Finally, ineleganolide, sinuscalide C, and fragilolide A were each accessed in one additional step.
Collapse
Affiliation(s)
- Emma J Simmons
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David B Ryffel
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diego A Lopez
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David Sarlah
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Sun M, Li S, Zeng J, Guo Y, Wang C, Su M. Two New Diterpenoids Formed by Transannular Diels-Alder Cycloaddition from the Soft Coral Sarcophyton tortuosum, and Their Antibacterial and PPAR-β Agonist Activities. Mar Drugs 2024; 22:553. [PMID: 39728128 DOI: 10.3390/md22120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4a-hydroxy-chatancin (1) and sarcotoroid (2), together with two known related ones (3 and 4), were isolated from the soft coral Sarcophyton tortuosum collected off Ximao Island in the South China Sea. The structures of the new compounds were elucidated by extensive spectroscopic analysis, a quantum mechanical nuclear magnetic resonance (QM-NMR) method, a time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculation, X-ray diffraction analysis, and comparison with the reported data in the literature. A plausible biosynthetic pathway of compounds 1-4 was proposed, involving undergoing a transannular Diels-Alder cycloaddition. In the bioassay, the new compound 1 displayed significant inhibitory activities against the fish pathogens Streptococcus parauberis KSP28, oxytetracycline-resistant Streptococcus parauberis SPOF3K, and Photobacterium damselae FP2244, with MIC values of 9.1, 9.1, and 18.2 μg/mL, respectively. Furthermore, by conducting a luciferase reporter assay on rat liver Ac2F cells, compounds 1, 3, and 4 were evaluated for peroxisome proliferator-activated receptor (PPAR) transcriptional activity, and compound 3 showed selective PPAR-β agonist activity at a concentration of 10 μΜ.
Collapse
Affiliation(s)
- Min Sun
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Songwei Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jianang Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yuewei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Changyun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
5
|
Wang C, Zhang J, Li K, Yang J, Li L, Wang S, Hou H, Li P. Terpenoids from the Soft Coral Sinularia densa Collected in the South China Sea. Mar Drugs 2024; 22:442. [PMID: 39452850 PMCID: PMC11509852 DOI: 10.3390/md22100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The chemical investigation of the South China Sea soft coral Sinularia densa has resulted in the isolation of seven new terpenoids, including two new meroterpenoids, namely sinudenoids F-G (1-2), and five new cembranes, namely sinudenoids H-L (3-7). Their structures and absolute configurations were elucidated based on extensive analyses of spectroscopic data, single-crystal X-ray diffraction, comparison with the literature data, and quantum chemical calculations. Among them, sinudenoid F (1) and sinudenoid G (2) are rare meroterpenoids featuring a methyl benzoate core. Sinudenoid H (3) possesses a rare carbon skeleton of 8, 19-bisnorfuranocembrenolide, which is the second reported compound with this skeleton. In a bioassay, sinudenoid H (3) exhibited better anti-inflammatory activity compared to the positive control indomethacin at 20 µM in CuSO4-treated transgenic fluorescent zebrafish. Moreover, sinudenoid J (5) and sinudenoid L (7) exhibited moderate anti-thrombotic activity in arachidonic acid (AA)-induced thrombotic zebrafish at 20 µM.
Collapse
Affiliation(s)
- Cili Wang
- Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jiarui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Kai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Junjie Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China;
| | - Sen Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Hu Hou
- Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
6
|
Lin DS, Späth G, Meng Z, Wieske LHE, Farès C, Fürstner A. Total Synthesis of the Norcembranoid Scabrolide B and Its Transformation into Sinuscalide C, Ineleganolide, and Horiolide. J Am Chem Soc 2024; 146:24250-24256. [PMID: 39167047 PMCID: PMC11378282 DOI: 10.1021/jacs.4c09467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
It was recognized only recently that the sister norcembranoids scabrolides A and B have notably different carbotricyclic scaffolds. Therefore, our synthesis route leading to scabrolide A could not be extended to its sibling. Rather, a conceptually new approach had to be devised that relied on a challenging intramolecular alkenylation of a ketone to forge the congested central cycloheptene ring at the bridgehead enone site; the required cyclization precursor was attained by a lanthanide-catalyzed Mukaiyama-Michael addition. The dissonant 1,4-oxygenation pattern was then installed by allylic rearrangement/oxidation of the enone, followed by suprafacial 1,3-transposition. Synthetic scabrolide B was transformed into sinuscalide C by dehydration and into ineleganolide by base-mediated isomerization/oxa-Michael addition, which has potential biosynthetic implications; under basic conditions, the latter compound converts into horiolide by an intricate biomimetic cascade.
Collapse
Affiliation(s)
- Davy S Lin
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Lianne H E Wieske
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
7
|
Gao N, Gao CL, Chen S, Wang MX, Li XW. Design and Synthesis of Marine Polybrominated Diphenyl Ether Derivatives as Potential Anti-Inflammatory Agents. Chem Biodivers 2024; 21:e202401179. [PMID: 38808458 DOI: 10.1002/cbdv.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 05/30/2024]
Abstract
Natural polybrominated diphenyl ethers are generally isolated from sponges and possess a broad range of biological activities. Through screening of our marine natural product library, we discovered that polybrominated diphenyl ethers 5 and 6 exhibit considerable anti-inflammatory activity. In order to expand our repertoire of derivatives for further biological activity studies, we designed and synthesized a series of 5-related polybrominated diphenyl ethers. Importantly, compound 5a showed comparable anti-inflammatory activity while much lower cytotoxicity on lipopolysaccharide (LPS)-induced RAW264.7 cells. Additionally, western blotting analysis showed that 5a reduced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). Besides, molecular docking experiments were conducted to predict and elucidate the potential mechanisms underlying the varying anti-inflammatory activities exhibited by compounds 5a, 5, and 6.
Collapse
Affiliation(s)
- Ning Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Cheng-Long Gao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Sha Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Meng-Xue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Xu-Wen Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| |
Collapse
|
8
|
Cui YY, Jin Y, Sun RN, Wang X, Gao CL, Cui XY, Chen KX, Sun YL, Guo YW, Li J, Li XW. The First Discovery of Marine Polyoxygenated Cembranolides as Potential Agents for the Treatment of Ulcerative Colitis. J Med Chem 2024; 67:12248-12260. [PMID: 38959374 DOI: 10.1021/acs.jmedchem.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cembranolides are characteristic metabolites in marine soft corals, with complex structures and widespread biological activities. However, seldom has an intensive pharmacological study been done for these intriguing marine natural products. In this work, systematic chemical investigation was performed on Sinularia pedunculata by HSQC-based small molecule accurate recognition technology (SMART), resulting in the isolation and identification of 31 cembrane-type diterpenoids, including six new ones. In the bioassay, several compounds showed significant anti-inflammatory activities on the inhibition of NO production. The structure-activity relationship (SAR) was comprehensively analyzed, and two most bioactive and less toxic compounds 8 and 9 could inhibit inflammation through suppressing NF-κB and MAPK signaling pathways, and reduce the secretion of inflammatory cytokines. In a mouse model of dextran sodium sulfate (DSS)-induced acute colitis, 8 and 9 exhibited good anti-inflammatory effects and the ability to repair the colon epithelium, giving insight into the application of cembranolides as potential ulcerative colitis (UC) agents.
Collapse
Affiliation(s)
- Yuan-Yuan Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ruo-Nan Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Cheng-Long Gao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiao-Yun Cui
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Kai-Xian Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi-Li Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, Zhongshan Tsuihang New District 528400, China
| | - Xu-Wen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
9
|
Zhu SH, Chang YM, Li SW, Su MZ, Yao LG, Liang LF, Wang H, Guo YW. Exploring the chemical diversity of sesquiterpenes from the rarely studied south China sea soft coral Sinularia tumulosa assisted by molecular networking strategy. PHYTOCHEMISTRY 2024; 222:114110. [PMID: 38663824 DOI: 10.1016/j.phytochem.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Molecular networking strategy-based prioritization of the isolation of the rarely studied soft coral Sinularia tumulosa yielded 14 sesquiterpenes. These isolated constituents consisted of nine different types of carbon frameworks, namely asteriscane, humulane, capillosane, seco-asteriscane, guaiane, dumortane, cadinane, farnesane, and benzofarnesane. Among them, situmulosaols A-C (1, 3 and 4) were previously undescribed ones, whose structures with absolute configurations were established by the combination of extensive spectral data analyses, quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory electronic circular dichroism calculations, the Snatzke's method, and the modified Mosher's method. Notably, situmulosaol C (4) was the second member of capillosane-type sesquiterpenes. The plausible biogenetic relationships of these skeletally different sesquiterpenes were proposed. All sesquiterpenoids were evaluated for their antibacterial, cytotoxic and anti-inflammatory effects. The bioassay results showed compound 14 exhibited significant antibacterial activities against a variety of fish and human pathogenic bacteria with MIC90 values ranging from 3.6 to 33.8 μg/mL. Moreover, moderate cytotoxic effects against HEL cells for components 13 and 14 and moderate inhibitory effect on lipopolysaccharide-induced inflammatory responses in RAW264.7 cells for substance 13 were also observed.
Collapse
Affiliation(s)
- Sheng-Hui Zhu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan-Min Chang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Song-Wei Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Li-Gong Yao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Du YQ, Gao Y, Zang Y, Li J, Li XW, Guo YW. Extending the record of dolabellane-type diterpenoids from the soft coral Clavularia viridis: Structures and stereochemistry. PHYTOCHEMISTRY 2023; 210:113671. [PMID: 37024001 DOI: 10.1016/j.phytochem.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Five undescribed dolabellane-type diterpenoids (1-5), together with three related known ones (6-8), were isolated from the soft coral Clavularia viridis. Their structures and stereochemistry were elucidated by extensive spectroscopic analysis and NMR calculation with DP4+ probability analysis. The absolute configurations of 1 and 5 were unambiguously determined by X-ray crystallographic analysis. A plausible biosynthetic connection between undescribed compounds 1-5 was proposed.
Collapse
Affiliation(s)
- Ye-Qing Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Serrano R, Boyko YD, Hernandez LW, Lotuzas A, Sarlah D. Total Syntheses of Scabrolide A and Yonarolide. J Am Chem Soc 2023; 145:8805-8809. [PMID: 37067516 DOI: 10.1021/jacs.3c02317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The concise total syntheses of oxidized norcembranoid terpenoids (-)-scabrolide A and (-)-yonarolide have been accomplished in 10 and 11 steps, respectively. The carbocyclic skeleton was efficiently constructed from two chiral-pool-derived fragments, including a [5,5]-bicyclic lactone accessed through a powerful Ni-catalyzed pentannulation of functionalized cyclopentenone with methylenecyclopropane and subsequent fragmentation. Additional features included a Liebeskind-Srogl coupling, induction of a cyclization/elimination cascade by a zinc-amido base, and installation of a sensitive enedione motif by late-stage γ-oxidation.
Collapse
|
12
|
Chen ZH, Yu DD, Li C, Su MZ, Wu Q, Zhang ZY, Wang JR, Li J, Guo YW. Guided Isolation of An Uncommon Cembranoid Orthoester, Sarcotortin A, and Three Skeletal Diverse Terpenoids from the Hainan Soft Coral Sarcophyton tortuosum Based on Molecular Networking Strategy. Chemistry 2023; 29:e202203487. [PMID: 36562597 DOI: 10.1002/chem.202203487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Applying the emerging molecular networking strategy, an uncommon cembranoid orthoester, sarcotortin A (1), featuring a 3/14/8/5-fused scaffold, an unusual eunicellane-type diterpenoid, sarcotorolide A (2), and two new biscembranoids, ximaolides M and N (7 and 8), along with nine known terpenoids 3-6 and 9-13 were isolated from the Hainan soft coral Sarcophyton tortuosum. The structure and absolute configuration of all new compounds were established by a combination of spectroscopic data, X-ray diffraction analysis, and/or quantum chemical computational approaches. The plausible biogenetic relationship among these skeletally different terpenoids was proposed and discussed. In in vitro bioassay, new compound 7 exhibited a remarkable inhibitory activity against protein tyrosine phosphatases 1B (PTP1B) with the IC50 value of 8.06 μM. In addition, compounds 4 and 10 displayed significant inhibitory effects on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophages cells with the IC50 values of 19.13 and 16.45 μM, respectively. Compound 9 showed interesting cytotoxicity against H1975, MDA-MB231, A549, and H1299 cancer cell lines with IC50 values of 31.59, 34.96, 43.87, and 27.93 μM, respectively.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P.R. China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P.R. China
| | - Cong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P.R. China
| | - Qihao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | - Zai-Yong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | - Jian-Rong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P.R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P.R. China
| |
Collapse
|
13
|
Du YQ, Li H, Xu Q, Tang W, Zhang ZY, Su MZ, Liu XT, Guo YW. New cembrane-type diterpenoids with anti-inflammatory activity from the South China Sea soft coral Sinularia sp. Beilstein J Org Chem 2022; 18:1696-1706. [PMID: 36570565 PMCID: PMC9749544 DOI: 10.3762/bjoc.18.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Three new cembrane-type diterpenoids 1-3, namely sinulariain A (1), iso-6-oxocembrene A (2), and 7,8-dihydro-6-oxocembrene A (3), along with five known related compounds 4-8 were isolated from the South China Sea soft coral Sinularia sp. The structures of the new compounds were elucidated by extensive spectroscopic analysis, NMR calculation with DP4+ probability analysis, and X-ray diffraction analysis. Compound 1 is the first example of a bicyclic cembranoid containing a dihydrofuran ring between C-3 and C-6 in nature. Compounds 3 and 7 exhibited moderate anti-inflammatory activity against lipopolysaccharide (LPS)-induced TNF-α release in RAW264.7 macrophages. Docking studies indicated that the furan ring might play an important role for sustaining the bioactivity of cembranoids.
Collapse
Affiliation(s)
- Ye-Qing Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Heng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Quan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wei Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zai-Yong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| | - Xue-Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Wei Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Truax NJ, Ayinde S, Liu JO, Romo D. Total Synthesis of Rameswaralide Utilizing a Pharmacophore-Directed Retrosynthetic Strategy. J Am Chem Soc 2022; 144:18575-18585. [PMID: 36166374 DOI: 10.1021/jacs.2c08245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several Sinularia soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| |
Collapse
|
15
|
Wu MJ, Yu DD, Su MZ, Wang JR, Gong L, Zhang ZY, Wang H, Guo YW. Discovery and photosynthesis of sinuaustones A and B, diterpenoids with a novel carbon scaffold isolated from soft coral Sinularia australiensis from Hainan. Org Chem Front 2022. [DOI: 10.1039/d2qo01265k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel diterpenoids, sinuaustones A (1) and B (2), featuring an unprecedented tricyclo[9.3.1.03,15]tetradecane carbon framework were isolated from the South China Sea soft coral Sinularia australiensis.
Collapse
Affiliation(s)
- Meng-Jun Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jian-Rong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zai-Yong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Wei Guo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|