1
|
Ren W, Zhu Q, Mo C, Ma X, Zhang W, Tang H, Fan Z, Wang Y, Fan G, Zhang L. Construction of Fe-Mn-La/Ce@biochar electrodes 3D/HEF systems for efficient electro-Fenton degradation of coking wastewater: performance and mechanism insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125779. [PMID: 40367803 DOI: 10.1016/j.jenvman.2025.125779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/21/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Heterogeneous electro-Fenton (HEF) technology has emerged as a prominent research focus for the efficient degradation of organic pollutants in wastewater. Herein, a novel enhanced heterogeneous electro-Fenton (HEF) system was developed using Fe-Mn-La/Ce tri-metal co-doped biochar electrodes (FML@BC and FMC@BC) to degrade contaminants in coking wastewater. The results demonstrated that the FMC@BC electrode outperformed FML@BC in catalytic degradation, achieving chemical oxygen demand (COD) and total organic carbon (TOC) removal rates of 90.95 % and 95.18 %, respectively, within 120 min under optimized conditions. The superior degradation efficiency of the FMC@BC electrode in the 3D/HEF system arose from biochar-enabled H2O2 generation via selective two-electron oxygen reduction reaction (ORR) and Fe-Mn-Ce-mediated activation through Fenton-type reactions. This synergy facilitated magnetite-like electron transport and multi-valent cycling to boost hydroxyl radicals (•OH) yield for efficient pollutant degradation. Quenching experiments and electron paramagnetic resonance (EPR) analysis confirmed that •OH played the dominant role in the degradation of organic compounds, while superoxide radicals (O2•-) acted as supplementary contributors. Furthermore, the FMC@BC particle electrode exhibited exceptional stability and magnetic properties across 10 cycles, maintaining a COD removal rate of 84.12 %. The 3D/HEF system also demonstrated high energy efficiency and cost-effectiveness, with an energy consumption of 16.25 kWh·kg-1·COD-1. This work provides a promising 3D/HEF catalyst, demonstrating practical potential for the remediation of refractory organic contaminants.
Collapse
Affiliation(s)
- Wenjie Ren
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiaoyun Zhu
- School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Chaofan Mo
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Xinyu Ma
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Wanqiang Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Huanhuan Tang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Zili Fan
- CSD Water Service Co., LTD, Beijing, 100096, China.
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
2
|
Dai Z, Zhang W, Li J, Wu Y, Fu H. Study on prediction model of TCH degradation by three -dimensional electrocatalysis based on XGBoost and MLP. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106420. [DOI: 10.1016/j.jwpe.2024.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Song J, Zhu L, Yu S, Li G, Wang D. The synergistic effect of adsorption and Fenton oxidation for organic pollutants in water remediation: an overview. RSC Adv 2024; 14:33489-33511. [PMID: 39439830 PMCID: PMC11495274 DOI: 10.1039/d4ra03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Water pollution from industrial sources presents a significant environmental challenge due to the presence of recalcitrant organic contaminants. These pollutants threaten human health and necessitate effective remediation strategies. This article reviewed the synergistic application of adsorption and Fenton oxidation for water treatment. Adsorption, a common technique, concentrates pollutants onto a solid surface, but offers limited degradation. Fenton oxidation, an advanced oxidation process (AOP), utilizes hydroxyl radicals for efficient organic compound breakdown. When adsorption and Fenton oxidation combine, adsorption pre-concentrates pollutants, boosting Fenton oxidation effectiveness. This review delves into the mechanisms and advantages of this integrated approach, highlighting its potential for enhanced removal of organic contaminants. The discussion encompasses the mechanisms of Fenton oxidation and the synergistic effects it has with adsorption. Additionally, various support materials employed in this combined process are explored, including carbon-based supports (activated carbon, graphene, carbon nanotubes and biochar), metal-organic frameworks (MOFs), and clays. Finally, the applicability of this approach to diverse wastewater streams, such as medical and industrial wastewater, is addressed. The review contains 105 references and summarizes the key findings and future perspectives for this promising water remediation technology.
Collapse
Affiliation(s)
- Junzhe Song
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Sheng Yu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Guobiao Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| |
Collapse
|
4
|
Piao M, Zhang J, Du H, Du H, Sun Y, Teng H. Cerium added corn-based biochar as particle electrode for electrochemical oxidation industrial wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:4598-4606. [PMID: 37727140 DOI: 10.1080/09593330.2023.2260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Three-dimensional (3D) electrochemical oxidation has become a popular advanced oxidation technology for wastewater treatment due to its various benefits. In this study, cerium (Ce) loaded biochar (Ce/BC) was used as a particle electrode to conduct the degradation of industrial wastewater released by the chemical industry. SEM, EDS, XRD, FTIR, XPS, and BET were used to characterize the properties of Ce/BC. The effects of some variables, including Ce loading (0-5%), pH (5-9), Ce/BC dosage (12.5-50.0 g/L), and working voltage (12-20 V), were evaluated with regard to COD elimination. The kinetics of COD oxidation and the energy consumption were carefully investigated. Tert-butanol significantly reduced the removal efficiency of COD, indicating that hydroxyl radicals generated during the process rather than direct electro-oxidation were the main mechanism for COD degradation. The treatment of industrial wastewater might benefit from the use of Ce/BC as particle electrode.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Jing Zhang
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, People's Republic of China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| |
Collapse
|
5
|
Piao M, Du H, Teng H. An overview of the recent advances and future prospects of three-dimensional particle electrode systems for treating wastewater. RSC Adv 2024; 14:27712-27732. [PMID: 39224647 PMCID: PMC11367087 DOI: 10.1039/d4ra04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional (3D) electrochemical technology is considered a very effective industrial wastewater treatment method for its high treatment efficiency, high current efficiency, low energy consumption, and, especially, ability to completely mineralize nonbiodegradable organic contaminants. Particle electrodes, which are the fundamental components of 3D electrochemical technology, have multiple functions in the electrochemical reaction process. Various types of particle electrodes have been created and applied for wastewater treatment. Herein, we present a thorough analysis of the research and development of particle electrodes used for electrocatalyzing pollutants. Initially, reactor designs, factors affecting the removal efficiency of pollutants and degradation mechanisms are introduced. In particular, a detailed investigation is conducted into the selection of particle electrode materials and the roles they play in the 3D electrochemical treatment of wastewater. Subsequently, the degradation efficiency and energy consumption associated with 3D electrochemical technology for different pollutants are investigated. Finally, the directions and outlook for further studies on particle electrodes are discussed. We believe that this review will offer a useful perspective on the development and application of particle electrodes for wastewater purification.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
- College of Engineering, Jilin Normal University Siping China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| |
Collapse
|
6
|
Wang Y, Yan C, Bingliang Y, Yang Y, Wang N, Yang J, Li B, Li Y, Xu X. Synchronously enhanced dual oxidation pathways via engineered Co-N x/Co 3O 4 for high-efficiency degradation of versatile antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134835. [PMID: 38878429 DOI: 10.1016/j.jhazmat.2024.134835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Developing efficient and eco-friendly technologies for treating the antibiotic wastewaters is crucial. At present, the catalysts with metal-nitrogen (M-Nx) coordination showed excellent Fenton-like performance but were always difficult to realize practical antibiotics degradation because of their complicated preparation methods and inferior stability. In this work, the Co-Nx configuration was facilely reconstructed on the surface of Co3O4 (Co-Nx/Co3O4), which exhibited superior catalytic activity and stability towards various antibiotics. DFT results indicated that stronger ETP oxidation will be triggered by the electron-donating pollutants since more electrons can be easily migrated from these pollutants to the Co-Nx/Co3O4/PMS complex. The Co-Nx/Co3O4/PMS system could maintain superior oxidation capacity, high catalytic stability and anti-interference due to (i) the strong nonradical ETP oxidation with superior degradation selectivity in Co-Nx/Co3O4/PMS system, and (ii) the synchronously enhanced radical oxidation with high populations of non-selective radicals generated via activating PMS by the Co-Nx/Co3O4. As a result, the synergies of synchronously enhanced dual oxidation pathways guaranteed the self-cleaning properties, maintaining 98 % of activity after eight cycles and stability across a wide pH range. Basically, these findings have significant implications for developing technologies for purifying antibiotic wastewater.
Collapse
Affiliation(s)
- Yujie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Yan
- Taishan College, Shandong University, Qingdao 266237, China
| | - Yu Bingliang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yaru Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ningru Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Samdan C, Demiral H, Simsek YE, Demiral I, Karabacakoglu B, Bozkurt T, Cin HH. Effective degradation of bentazone by two-dimensional and three-phase, three-dimensional electro-oxidation system: kinetic studies and optimization using ANN. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51267-51299. [PMID: 39107643 DOI: 10.1007/s11356-024-34493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Bentazone is a broad-leaved weed-specific herbicide in the pesticide industry. This study focused on removing bentazone from water using three different methods: a two and three-dimensional electro-oxidation process (2D/EOP and 3D/EOP) with a fluid-type reactor arrangement using tetraethylenepentamine-loaded particle electrodes and an adsorption method. Additionally, we analysed the effects of two types of supporting electrolytes (Na2SO4 and NaCl) on the degradation process. The energy consumption amounts were calculated to evaluate the obtained results. The degradation reaction occurs 3.5 times faster in 3D/EOP than in 2D/EOP at 6 V in Na2SO4. Similarly, the degradation reaction of bentazone in NaCl occurs 2.5 times faster in 3D/EOP than in 2D/EOP at a value of 7.2 mA/cm2. Removal of bentazone is significantly better in 3D/EOPs than in 2D/EOPs. The use of particle electrodes can significantly enhance the degradation efficiency. The study further assessed the prediction abilities of the machine learning model (ANN). The ANN presented reasonable accuracy in bentazone degradation with high R2 values of 0.97953, 0.98561, 0.98563, and 0.99649 for 2D with Na2SO4, 2D with NaCl, 3D with Na2SO4, and 3D with NaCl, respectively.
Collapse
Affiliation(s)
- Canan Samdan
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey.
| | - Hakan Demiral
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Yunus Emre Simsek
- Department of Chemical Engineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11100, TR, Bilecik, Turkey
| | - Ilknur Demiral
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Belgin Karabacakoglu
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Tugce Bozkurt
- Chemical Engineering Department, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Hatice Hurrem Cin
- Chemical Engineering Department, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
| |
Collapse
|
8
|
Li S, Jiang B, Liu G, Shi C, Yu H, Lin Y. Recent progress of particle electrode materials in three-dimensional electrode reactor: synthesis strategy and electrocatalytic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11490-11506. [PMID: 38198081 DOI: 10.1007/s11356-023-31807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
With the complete promotion of a green, low-carbon, safe, and efficient economic system as well as energy system, the promotion of clean governance technology in the field of environmental governance becomes increasingly vital. Because of its low energy consumption, great efficiency, and lack of secondary pollutants, three-dimensional (3D) electrode technology is acknowledged as an environmentally beneficial and sustainable way to managing clean surroundings. The particle electrode is an essential feature of the 3D electrode reactor. This study provides an in-depth examination of the most current advancements in 3D electrode technology. The significance of 3D electrode technology is emphasized, with an emphasis on its use in a variety of sectors. Furthermore, the particle electrode synthesis approach and mechanism are summarized, providing vital insights into the actual implementation of this technology. Furthermore, by a metrological examination of the research literature in this sector, the paper expounds on the potential and obstacles in the development and popularization of future technology.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bo Jiang
- Jilin Research and Design Institute of Building Science (Jilin Province Construction Engineering Quality Test Center), Changchun, 130011, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, Japan
| | - Hongbin Yu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
9
|
López-Campos B, Paniagua SA, Vega-Baudrit JR, Muñoz-Arrieta R, Guerrero-Gutiérrez EMA. Accelerated Cr (VI) removal by a three-dimensional electro-Fenton system using green iron nanoparticles. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10981. [PMID: 38264917 DOI: 10.1002/wer.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Green-synthesized iron nanoparticles (GAP-FeNP) were used as particle electrodes in a three-dimensional electro-Fenton (3DEF) process to accelerate the removal of hexavalent chromium [Cr (VI)]. Removal was evaluated by varying the pH (3.0, 6.0, and 9.0) and initial Cr (VI) concentrations (10, 30, and 50 mg/L) at 5 and 25 min. These results demonstrated that GAP-FeNP/3DEF treatment achieved more than 94% Cr (VI) removal under all tested conditions. Furthermore, it was observed that Cr (VI) removal exceeded 98% under pH 9.0 in all experimental parameters tested. The results of the response surface methodology (RSM) determined two optimal conditions: the first, characterized by a pH of 3.0, Cr (VI) concentration at 50 mg/L, and 25 min, yielded a Cr (VI) removal of 99.7%. The second optimal condition emerged at pH 9.0, with Cr (VI) concentrations of 10 mg/L and 5 min, achieving a Cr (VI) removal of 99.5%. This study highlights the potential of the GAP-FeNP to synergistically accelerate Cr (VI) removal by the 3DEF process, allowing faster elimination and expansion of the alkaline (pH 9.0) applicability. PRACTITIONER POINTS: The required time for >99% of Cr (VI) removal by the GAP-FeNP/3DEF process was shortened from 25 to 5 min. EF process with GAP-FeNP reduces the time necessary for Cr (VI) removal, which is 67% faster than conventional methods. EF process using GAP-FeNP removed >94% of Cr (VI) after 25 min for all initial Cr (VI) concentrations and pH treatments. Cr (VI) removal by the GAP-FeNP/3DEF process was >98% at a pH of 9.0, widening the solution pH applicability.
Collapse
Affiliation(s)
- Brian López-Campos
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - Sergio A Paniagua
- Laboratorio Nacional de Nanotecnología (LANOTEC CeNAT), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores, San José, Costa Rica
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología (LANOTEC CeNAT), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores, San José, Costa Rica
- Laboratorio de Polímeros POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Rodrigo Muñoz-Arrieta
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores (CeNAT-CONARE), San José, Costa Rica
| | - Edward M A Guerrero-Gutiérrez
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| |
Collapse
|