1
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
2
|
Shi Y, Li H, Chu D, Lin W, Wang X, Wu Y, Li K, Wang H, Li D, Xu Z, Gao L, Li B, Chen H. Rescuing Nucleus Pulposus Cells From Senescence via Dual-Functional Greigite Nanozyme to Alleviate Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300988. [PMID: 37400370 PMCID: PMC10477883 DOI: 10.1002/advs.202300988] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Indexed: 07/05/2023]
Abstract
High levels of reactive oxygen species (ROS) lead to progressive deterioration of mitochondrial function, resulting in tissue degeneration. In this study, ROS accumulation induced nucleus pulposus cells (NPCs) senescence is observed in degenerative human and rat intervertebral disc, suggesting senescence as a new therapeutic target to reverse intervertebral disc degeneration (IVDD). By targeting this, dual-functional greigite nanozyme is successfully constructed, which shows the ability to release abundant polysulfides and presents strong superoxide dismutase and catalase activities, both of which function to scavenge ROS and maintain the tissue at physical redox level. By significantly lowering the ROS level, greigite nanozyme rescues damaged mitochondrial function in IVDD models both in vitro and in vivo, rescues NPCs from senescence and alleviated the inflammatory response. Furthermore, RNA-sequencing reveals ROS-p53-p21 axis is responsible for cellular senescence-induced IVDD. Activation of the axis abolishes greigite nanozyme rescued NPCs senescence phenotype, as well as the alleviated inflammatory response to greigite nanozyme, which confirms the role of ROS-p53-p21 axis in greigite nanozyme's function to reverse IVDD. In conclusion, this study demonstrates that ROS-induced NPCs senescence leads to IVDD and the dual-functional greigite nanozyme holds strong potential to reverse this process, providing a novel strategy for IVDD management.
Collapse
Affiliation(s)
- Yu Shi
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Hanwen Li
- Orthopedic InstituteDepartment of Orthopedic SurgeryFirst Affiliated HospitalSuzhou Medical CollegeSoochow UniversityNo. 899 Pinghai RoadSuzhou215000P. R. China
| | - Dongchuan Chu
- Department of RadiologyAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
| | - Wenzheng Lin
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Xinglong Wang
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Yin Wu
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Ke Li
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Huihui Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Dandan Li
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Zhuobin Xu
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for NanozymeInstitute of BiophysicsChinese Academy of SciencesNo. 15 Datun RoadBeijing100101P. R. China
| | - Bin Li
- Orthopedic InstituteDepartment of Orthopedic SurgeryFirst Affiliated HospitalSuzhou Medical CollegeSoochow UniversityNo. 899 Pinghai RoadSuzhou215000P. R. China
| | - Hao Chen
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
| |
Collapse
|
3
|
Baik AH, Haribowo AG, Chen X, Queliconi BB, Barrios AM, Garg A, Maishan M, Campos AR, Matthay MA, Jain IH. Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes. Mol Cell 2023; 83:942-960.e9. [PMID: 36893757 PMCID: PMC10148707 DOI: 10.1016/j.molcel.2023.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xuewen Chen
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ankur Garg
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA
| | - Alexandre R Campos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA; Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Domán A, Dóka É, Garai D, Bogdándi V, Balla G, Balla J, Nagy P. Interactions of reactive sulfur species with metalloproteins. Redox Biol 2023; 60:102617. [PMID: 36738685 PMCID: PMC9926313 DOI: 10.1016/j.redox.2023.102617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive sulfur species (RSS) entail a diverse family of sulfur derivatives that have emerged as important effector molecules in H2S-mediated biological events. RSS (including H2S) can exert their biological roles via widespread interactions with metalloproteins. Metalloproteins are essential components along the metabolic route of oxygen in the body, from the transport and storage of O2, through cellular respiration, to the maintenance of redox homeostasis by elimination of reactive oxygen species (ROS). Moreover, heme peroxidases contribute to immune defense by killing pathogens using oxygen-derived H2O2 as a precursor for stronger oxidants. Coordination and redox reactions with metal centers are primary means of RSS to alter fundamental cellular functions. In addition to RSS-mediated metalloprotein functions, the reduction of high-valent metal centers by RSS results in radical formation and opens the way for subsequent per- and polysulfide formation, which may have implications in cellular protection against oxidative stress and in redox signaling. Furthermore, recent findings pointed out the potential role of RSS as substrates for mitochondrial energy production and their cytoprotective capacity, with the involvement of metalloproteins. The current review summarizes the interactions of RSS with protein metal centers and their biological implications with special emphasis on mechanistic aspects, sulfide-mediated signaling, and pathophysiological consequences. A deeper understanding of the biological actions of reactive sulfur species on a molecular level is primordial in H2S-related drug development and the advancement of redox medicine.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary,Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - György Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary
| | - József Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary,Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|
5
|
Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Spectroscopic and functional characterization of the [2Fe-2S] scaffold protein Nfu from Synechocystis PCC6803. Biochimie 2022; 192:51-62. [PMID: 34582998 PMCID: PMC8724361 DOI: 10.1016/j.biochi.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for various essential metabolic processes. Conservation of proteins required for their biosynthesis and trafficking allows for simple bacteria to be used as models to aid in exploring these complex pathways in higher organisms. Cyanobacteria are among the most investigated organisms for these processes, as they are unicellular and can survive under photoautotrophic and heterotrophic conditions. Herein, we report the potential role of Synechocystis PCC6803 NifU (now named SyNfu) as the principal scaffold protein required for iron-sulfur cluster biosynthesis in that organism. SyNfu is a well-folded protein with distinct secondary structural elements, as evidenced by circular dichroism and a well-dispersed pattern of 1H-15N HSQC NMR peaks, and readily reconstitutes as a [2Fe-2S] dimeric protein complex. Cluster exchange experiments show that glutathione can extract the cluster from holo-SyNfu, but the transfer is unidirectional. We also confirm the ability of SyNfu to transfer cluster to both human ferredoxin 1 and ferredoxin 2, while also demonstrating the capacity to deliver cluster to both monothiol glutaredoxin 3 and dithiol glutaredoxin 2. This evidence supports the hypothesis that SyNfu indeed serves as the main scaffold protein in Synechocystis, as it has been shown to be the only protein required for viability in the absence of photoautotrophic conditions. Similar to other NFU-type cluster donors and other scaffold and carrier proteins, such as ISCU, SyNfu is shown by DSC to be structurally less stable than regular protein donors, while retaining a relatively well-defined tertiary structure as represented by 1H-15N HSQC NMR experiments.
Collapse
|
7
|
Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold. INORGANICS 2021. [DOI: 10.3390/inorganics10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AlphaFold and RoseTTAFold are deep learning-based approaches that predict the structure of proteins from their amino acid sequences. Remarkable success has recently been achieved in the prediction accuracy of not only the fold of the target protein but also the position of its amino acid side chains. In this article, I question the accuracy of these methods to predict iron–sulfur binding sites. I analyze three-dimensional models calculated by AlphaFold and RoseTTAFold of Fe–S–dependent enzymes, for which no structure of a homologous protein has been solved experimentally. In all cases, the amino acids that presumably coordinate the cluster were gathered together and facing each other, which led to a quite accurate model of the Fe–S cluster binding site. Yet, cysteine candidates were often involved in intramolecular disulfide bonds, and the number and identity of the protein amino acids that should ligate the cluster were not always clear. The experimental structure determination of the protein with its Fe–S cluster and in complex with substrate/inhibitor/product is still needed to unambiguously visualize the coordination state of the cluster and understand the conformational changes occurring during catalysis.
Collapse
|
8
|
A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S. Proc Natl Acad Sci U S A 2021; 118:2102318118. [PMID: 34282016 DOI: 10.1073/pnas.2102318118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.
Collapse
|
9
|
Campbell CJ, Pall AE, Naik AR, Thompson LN, Stemmler TL. Molecular Details of the Frataxin-Scaffold Interaction during Mitochondrial Fe-S Cluster Assembly. Int J Mol Sci 2021; 22:6006. [PMID: 34199378 PMCID: PMC8199681 DOI: 10.3390/ijms22116006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Iron-sulfur clusters are essential to almost every life form and utilized for their unique structural and redox-targeted activities within cells during many cellular pathways. Although there are three different Fe-S cluster assembly pathways in prokaryotes (the NIF, SUF and ISC pathways) and two in eukaryotes (CIA and ISC pathways), the iron-sulfur cluster (ISC) pathway serves as the central mechanism for providing 2Fe-2S clusters, directly and indirectly, throughout the entire cell in eukaryotes. Proteins central to the eukaryotic ISC cluster assembly complex include the cysteine desulfurase, a cysteine desulfurase accessory protein, the acyl carrier protein, the scaffold protein and frataxin (in humans, NFS1, ISD11, ACP, ISCU and FXN, respectively). Recent molecular details of this complex (labeled NIAUF from the first letter from each ISC protein outlined earlier), which exists as a dimeric pentamer, have provided real structural insight into how these partner proteins arrange themselves around the cysteine desulfurase, the core dimer of the (NIAUF)2 complex. In this review, we focus on both frataxin and the scaffold within the human, fly and yeast model systems to provide a better understanding of the biophysical characteristics of each protein alone and within the FXN/ISCU complex as it exists within the larger NIAUF construct. These details support a complex dynamic interaction between the FXN and ISCU proteins when both are part of the NIAUF complex and this provides additional insight into the coordinated mechanism of Fe-S cluster assembly.
Collapse
Affiliation(s)
| | | | | | | | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA; (C.J.C.); (A.E.P.); (A.R.N.); (L.N.T.)
| |
Collapse
|
10
|
Yuan Y, Wang L, Gao L. Nano-Sized Iron Sulfide: Structure, Synthesis, Properties, and Biomedical Applications. Front Chem 2020; 8:818. [PMID: 33134265 PMCID: PMC7512625 DOI: 10.3389/fchem.2020.00818] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Nano-sized iron sulfides have attracted intense research interest due to the variety of their types, structures, and physicochemical properties. In particular, nano-sized iron sulfides exhibit enzyme-like activity by mimicking natural enzymes that depend on an iron-sulfur cluster as cofactor, extending their potential for applications in biomedicine. The present review principally summarizes the synthesis, properties and applications in biomedical fields, demonstrating that nano-sized iron sulfides have considerable potential for improving human health and quality of life.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China.,CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018; 10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-sulfur clusters (Fe-S) are one of the most ancient, ubiquitous and versatile classes of metal cofactors found in nature. Proteins that contain Fe-S clusters constitute one of the largest families of proteins, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, radical generation, and, more recently discovered, DNA repair. Research during the past two decades has shown that mitochondria are central to the biogenesis of Fe-S clusters in eukaryotic cells via a conserved cluster assembly machinery (ISC assembly machinery) that also controls the synthesis of Fe-S clusters of cytosolic and nuclear proteins. Several key steps for synthesis and trafficking have been determined for mitochondrial Fe-S clusters, as well as the cytosol (CIA - cytosolic iron-sulfur protein assembly), but detailed mechanisms of cluster biosynthesis, transport, and exchange are not well established. Genetic mutations and the instability of certain steps in the biosynthesis and maturation of mitochondrial, cytosolic and nuclear Fe-S cluster proteins affects overall cellular iron homeostasis and can lead to severe metabolic, systemic, neurological and hematological diseases, often resulting in fatality. In this review we briefly summarize the current molecular understanding of both mitochondrial ISC and CIA assembly machineries, and present a comprehensive overview of various associated inborn human disease states.
Collapse
Affiliation(s)
- C Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
12
|
Dzul SP, Rocha AG, Rawat S, Kandegedara A, Kusowski A, Pain J, Murari A, Pain D, Dancis A, Stemmler TL. In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics 2017; 9:48-60. [PMID: 27738674 DOI: 10.1039/c6mt00163g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FeS-clusters are utilized by numerous proteins within several biological pathways that are essential for life. In eukaryotes, the primary FeS-cluster production pathway is the mitochondrial iron-sulfur cluster (ISC) pathway. In Saccharomyces cerevisiae, de novo FeS-cluster formation is accomplished through coordinated assembly with the substrates iron and sulfur by the scaffold assembly protein "Isu1". Sulfur for cluster assembly is provided by cysteine desulfurase "Nfs1", a protein that works in union with its accessory protein "Isd11". Frataxin "Yfh1" helps direct cluster assembly by serving as a modulator of Nfs1 activity, by assisting in the delivery of sulfur and Fe(ii) to Isu1, or more likely through a combination of these and other possible roles. In vitro studies on the yeast ISC machinery have been limited, however, due to the inherent instability of recombinant Isu1. Isu1 is a molecule prone to degradation and aggregation. To circumvent Isu1 instability, we have replaced yeast Isu1 with the fly ortholog to stabilize our in vitro ISC assembly system and assist us in elucidating molecular details of the yeast ISC pathway. Our laboratory previously observed that recombinant frataxin from Drosophila melanogaster has remarkable stability compared to the yeast ortholog. Here we provide the first characterization of D. melanogaster Isu1 (fIscU) and demonstrate its ability to function within the yeast ISC machinery both in vivo and in vitro. Recombinant fIscU has physical properties similar to that of yeast Isu1. It functions as a stable dimer with similar Fe(ii) affinity and ability to form two 2Fe-2S clusters as the yeast dimer. The fIscU and yeast ISC proteins are compatible in vitro; addition of Yfh1 to Nfs1-Isd11 increases the rate of FeS-cluster formation on fIscU to a similar extent observed with Isu1. Finally, fIscU expressed in mitochondria of a yeast strain lacking Isu1 (and its paralog Isu2) is able to completely reverse the deletion phenotypes. These results demonstrate fIscU can functionally replace yeast Isu1 and it can serve as a powerful tool for exploring molecular details within the yeast ISC pathway.
Collapse
Affiliation(s)
- Stephen P Dzul
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Agostinho G Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Swati Rawat
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Ashoka Kandegedara
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - April Kusowski
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Anjaneyulu Murari
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ, Jin L, Szostak JW, Sasselov DD, Sutherland JD, Mansy SS. UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nat Chem 2017; 9:1229-1234. [PMID: 29168482 DOI: 10.1038/nchem.2817] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.
Collapse
Affiliation(s)
- Claudia Bonfio
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Luca Valer
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | | | - Sachin Shah
- Chemistry, School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK
| | - David J Evans
- Chemistry, School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Lin Jin
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Dimitar D Sasselov
- Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Sheref S Mansy
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| |
Collapse
|
14
|
Benjdia A, Decamps L, Guillot A, Kubiak X, Ruffié P, Sandström C, Berteau O. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. J Biol Chem 2017; 292:10835-10844. [PMID: 28476884 PMCID: PMC5491770 DOI: 10.1074/jbc.m117.783464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Indexed: 11/06/2022] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to Cα atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus, and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters.
Collapse
Affiliation(s)
- Alhosna Benjdia
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| | - Laure Decamps
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| | - Alain Guillot
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| | - Xavier Kubiak
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| | - Pauline Ruffié
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| | - Corine Sandström
- the Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P. O. Box 7015, Uppsala 750-07, Sweden
| | - Olivier Berteau
- From the Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France and
| |
Collapse
|
15
|
Uchida T, Kobayashi N, Muneta S, Ishimori K. The Iron Chaperone Protein CyaY from Vibrio cholerae Is a Heme-Binding Protein. Biochemistry 2017; 56:2425-2434. [DOI: 10.1021/acs.biochem.6b01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takeshi Uchida
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Noriyuki Kobayashi
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Souichiro Muneta
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
16
|
Andreini C, Rosato A, Banci L. The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level. PLoS One 2017; 12:e0171279. [PMID: 28135316 PMCID: PMC5279795 DOI: 10.1371/journal.pone.0171279] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
About 2 billion years ago, the atmosphere of the Earth experienced a great change due to the buildup of dioxygen produced by photosynthetic organisms. This transition caused a reduction of iron bioavailability and at the same time exposed living organisms to the threat of oxidative stress. Iron-sulfur (Fe-S) clusters require iron ions for their biosynthesis and are labile if exposed to reactive oxygen species. To assess how the above transition influenced the usage of Fe-S clusters by organisms, we compared the distribution of the Fe-S proteins encoded by the genomes of more than 400 prokaryotic organisms as a function of their dioxygen requirements. Aerobic organisms use less Fe-S proteins than the majority of anaerobic organisms with a similar genome size. Furthermore, aerobes have evolved specific Fe-S proteins that bind the less iron-demanding and more chemically stable Fe2S2 clusters while reducing the number of Fe4S4-binding proteins in their genomes. However, there is a shared core of Fe-S protein families composed mainly by Fe4S4-binding proteins. Members of these families are present also in humans. The distribution of human Fe-S proteins within cell compartments shows that mitochondrial proteins are inherited from prokaryotic proteins of aerobes, whereas nuclear and cytoplasmic Fe-S proteins are inherited from anaerobic organisms.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Wachnowsky C, Cowan JA. In Vitro Studies of Cellular Iron–Sulfur Cluster Biosynthesis, Trafficking, and Transport. Methods Enzymol 2017; 595:55-82. [DOI: 10.1016/bs.mie.2017.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster exchange reactions mediated by the human Nfu protein. J Biol Inorg Chem 2016; 21:825-836. [PMID: 27538573 DOI: 10.1007/s00775-016-1381-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Human Nfu is an iron-sulfur cluster protein that has recently been implicated in multiple mitochondrial dysfunctional syndrome (MMDS1). The Nfu family of proteins shares a highly homologous domain that contains a conserved active site consisting of a CXXC motif. There is less functional conservation between bacterial and human Nfu proteins, particularly concerning their Iron-sulfur cluster binding and transfer roles. Herein, we characterize the cluster exchange chemistry of human Nfu and its capacity to bind and transfer a [2Fe-2S] cluster. The mechanism of cluster uptake from a physiologically relevant [2Fe-2S](GS)4 cluster complex, and extraction of the Nfu-bound iron-sulfur cluster by glutathione are described. Human holo Nfu shows a dimer-tetramer equilibrium with a protein to cluster ratio of 2:1, reflecting the Nfu-bridging [2Fe-2S] cluster. This cluster can be transferred to apo human ferredoxins at relatively fast rates, demonstrating a direct role for human Nfu in the process of [2Fe-2S] cluster trafficking and delivery.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
- The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| |
Collapse
|
19
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Li YY, Wang L, Zhang J, Ma C, Liang SK, Li LF, Zhao FC, Meng Y, Gao EJ. A new crystalline framework formed from 1,4-bis(4-pyridylmethyl)piperazine and Cd(NO3)2: Interpenetrating molecular ladders from T-shaped building blocks. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615080259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lipper CH, Paddock ML, Onuchic JN, Mittler R, Nechushtai R, Jennings PA. Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis. PLoS One 2015; 10:e0139699. [PMID: 26448442 PMCID: PMC4598119 DOI: 10.1371/journal.pone.0139699] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA.
Collapse
Affiliation(s)
- Colin H. Lipper
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - Mark L. Paddock
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics and Department of Physics, Rice University, Houston, TX, 77005, United States of America
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX, 76203, United States of America
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Patricia A. Jennings
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
- * E-mail:
| |
Collapse
|
22
|
Mielcarek A, Blauenburg B, Miethke M, Marahiel MA. Molecular insights into frataxin-mediated iron supply for heme biosynthesis in Bacillus subtilis. PLoS One 2015; 10:e0122538. [PMID: 25826316 PMCID: PMC4380498 DOI: 10.1371/journal.pone.0122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.
Collapse
Affiliation(s)
- Andreas Mielcarek
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| | - Bastian Blauenburg
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| | - Marcus Miethke
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mohamed A. Marahiel
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| |
Collapse
|
23
|
Adrover M, Howes BD, Iannuzzi C, Smulevich G, Pastore A. Anatomy of an iron-sulfur cluster scaffold protein: Understanding the determinants of [2Fe-2S] cluster stability on IscU. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1448-56. [PMID: 25447544 DOI: 10.1016/j.bbamcr.2014.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
Protein-bound iron sulfur clusters are prosthetic groups involved in several metabolic pathways. Understanding how they interact with the host protein and which factors influence their stability is therefore an important goal in biology. Here, we have addressed this question by studying the determinants of the 2Fe-2S cluster stability in the IscU/Isu protein scaffold. Through a detailed computational study based on a mixed quantum and classical mechanics approach, we predict that the simultaneous presence of two conserved residues, D39 and H105, has a conflicting role in cluster coordination which results in destabilizing cluster-loaded IscU/Isu according to a 'tug-of-war' mechanism. The effect is absent in the D39A mutant already known to host the cluster more stably. Our theoretical conclusions are directly supported by experimental data, also obtained from the H105A mutant, which has properties intermediate between the wild-type and the D39A mutant. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Miquel Adrover
- IUNICS, Departament de Química, Universitat de les Illes Balears, Crta. Valldemossa, km 7.5, E-07122 Palma de Mallorca, (Spain)
| | - Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Seconda Universita' di Napoli, Via De Crecchio 7, 80138 Naples, (Italy)
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King's College London, Denmark Hill Campus, London SE5, (UK).
| |
Collapse
|
24
|
Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 2014; 21:990-6. [DOI: 10.1038/nsmb.2904] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
|
25
|
Abstract
Iron is essential for pathogen survival, virulence, and colonization. Feo is suggested to function as the ferrous iron (Fe(2+)) transporter. The enterobacterial Feo system is composed of 3 proteins: FeoB is the indispensable component and is a large membrane protein likely to function as a permease; FeoA is a small Src homology 3 (SH3) domain protein that interacts with FeoB; FeoC is a winged-helix protein containing 4 conserved Cys residues in a sequence suitable for harboring a putative iron-sulfur (Fe-S) cluster. The presence of an iron-sulfur cluster on FeoC has never been shown experimentally. We report that under anaerobic conditions, the recombinant Klebsiella pneumoniae FeoC (KpFeoC) exhibited hyperfine-shifted nuclear magnetic resonance (NMR) and a UV-visible (UV-Vis) absorbance spectrum characteristic of a paramagnetic center. The electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) results were consistent only with the [4Fe-4S] clusters. Substituting the cysteinyl sulfur with oxygen resulted in significantly reduced cluster stability, establishing the roles of these cysteines as the ligands for the Fe-S cluster. When exposed to oxygen, the [4Fe-4S] cluster degraded to [3Fe-4S] and eventually disappeared. We propose that KpFeoC may regulate the function of the Feo transporter through the oxygen- or iron-sensitive coordination of the Fe-S cluster.
Collapse
|
26
|
Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013; 35:21-34. [PMID: 23850631 DOI: 10.1016/j.niox.2013.07.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, University of Alabama at Birmingham, United States; Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| | | |
Collapse
|
27
|
Molecular view of an electron transfer process essential for iron-sulfur protein biogenesis. Proc Natl Acad Sci U S A 2013; 110:7136-41. [PMID: 23596212 DOI: 10.1073/pnas.1302378110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biogenesis of iron-sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron-sulfur protein assembly machinery, two human key proteins--NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and anamorsin--form a stable complex in vivo that was proposed to provide electrons for assembling cytosolic iron-sulfur cluster proteins. The Ndor1-anamorsin interaction was also suggested to be implicated in the regulation of cell survival/death mechanisms. In the present work we unravel the molecular basis of recognition between Ndor1 and anamorsin and of the electron transfer process. This is based on the structural characterization of the two partner proteins, the investigation of the electron transfer process, and the identification of those protein regions involved in complex formation and those involved in electron transfer. We found that an unstructured region of anamorsin is essential for the formation of a specific and stable protein complex with Ndor1, whereas the C-terminal region of anamorsin, containing the [2Fe-2S] redox center, transiently interacts through complementary charged residues with the FMN-binding site region of Ndor1 to perform electron transfer. Our results propose a molecular model of the electron transfer process that is crucial for understanding the functional role of this interaction in human cells.
Collapse
|
28
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Wu G, Li L. Biochemical characterization of iron-sulfur cluster assembly in the scaffold IscU of Escherichia coli. BIOCHEMISTRY (MOSCOW) 2012; 77:135-42. [DOI: 10.1134/s0006297912020034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Genfu Wu
- College of Life Science, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
30
|
Craig S, Gao L, Lee I, Gray T, Berdis AJ. Gold-containing indoles as anticancer agents that potentiate the cytotoxic effects of ionizing radiation. J Med Chem 2012; 55:2437-51. [PMID: 22289037 DOI: 10.1021/jm2005942] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This report describes the design and application of several distinct gold-containing indoles as anticancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles to potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells.
Collapse
Affiliation(s)
- Sandra Craig
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|