1
|
Liu D, Chen J, Zhou J, Dai J, Qin H, Wan G, Qian J, Li P, Li J. Macrophage-related inflammatory responses to degradation products of biodegradable molybdenum implants. Mater Today Bio 2025; 31:101519. [PMID: 39990739 PMCID: PMC11846932 DOI: 10.1016/j.mtbio.2025.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Metallic molybdenum (Mo) has been increasingly recognized as a potential biodegradable metal for biomedical implants. However, the macrophage-mediated inflammatory responses to Mo-based implants remain underexplored. This study examined the in vitro inflammatory reactions of macrophages to the degradation products of biodegradable Mo implants. The short-term and long-term biodegradation behavior and the subsequent impact on cytotoxicity, metabolism, and macrophage polarization were assessed. Both Mo and its degradation products were shown to be non-toxic within macrophage tolerance limits. Nevertheless, morphological changes and pro-inflammatory polarization were observed in cells around Mo-based specimen. Notably, matrix metalloproteinase 9 (Mmp9) was identified as a key gene influencing macrophage polarization in proximity to Mo. Additionally, pre-treating the Mo specimens in culture medium for 24 h significantly mitigated its stimulatory effects on cells. These results demonstrated the significance of optimizing Mo pre-treatment methods to prevent localized inflammation associated with its degradation. Specifically, pre-treatment of Mo can effectively mitigate the adverse impacts of its early degradation on macrophages and the surrounding immune environment. Our research into these early degradation phases introduces new avenues for studying molybdenum's immunomodulatory properties, potentially through precise control of its release and the targeted expression of pivotal genes.
Collapse
Affiliation(s)
- Danyang Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510182, PR China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, PR China
| | - Jiahao Chen
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Jiannan Zhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510182, PR China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, PR China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, PR China
| | - Haotian Qin
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Guojiang Wan
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Junyu Qian
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510182, PR China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, PR China
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510182, PR China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, PR China
| |
Collapse
|
2
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Megrian D, Martinez M, Alzari PM, Wehenkel AM. Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA. Commun Biol 2025; 8:49. [PMID: 39809875 PMCID: PMC11733289 DOI: 10.1038/s42003-025-07476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time. We use phylogenetic inference and protein structure analyses to study its diversity and evolutionary history. Glp-expressing Bacteria have at least two copies of the gene, and analysis of their putative active sites suggests that Glp lost its enzymatic role. In Archaea, we find an ancestral duplication, with one paralog that may bind tungsten instead of molybdenum. Early eukaryotes acquired MoeA from Bacteria, MogA fused with MoeA in the opisthokont ancestors, and it finally gained roles in anchoring inhibitory neurotransmitters. Our findings highlight MoeA's functional versatility and repurposing.
Collapse
Affiliation(s)
- Daniela Megrian
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
- Institut Pasteur de Montevideo, Bioinformatics Unit, 11200, Montevideo, Uruguay.
| | - Mariano Martinez
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015, Paris, France.
| |
Collapse
|
4
|
Megrian D, Martinez M, Alzari PM, Wehenkel AM. Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604723. [PMID: 39091723 PMCID: PMC11291035 DOI: 10.1101/2024.07.23.604723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
MoeA, or gephyrin in higher eukaryotes, is crucial for molybdenum cofactor biosynthesis required in redox reactions. Gephyrin is a moonlighting protein also involved in postsynaptic receptor clustering, a feature thought to be a recent evolutionary trait. We showed previously that a repurposed copy of MoeA (Glp) is involved in bacterial cell division. To investigate how MoeA acquired multifunctionality, we used phylogenetic inference and protein structure analyses to understand the diversity and evolutionary history of MoeA. Glp-expressing Bacteria have at least two copies of the gene, and our analysis suggests that Glp has lost its enzymatic role. In Archaea we identified an ancestral duplication where one of the paralogs might bind tungsten instead of molybdenum. In eukaryotes, the acquisition of the moonlighting activity of gephyrin comprised three major events: first, MoeA was obtained from Bacteria by early eukaryotes, second, MogA was fused to the N-terminus of MoeA in the ancestor of opisthokonts, and finally, it acquired the function of anchoring GlyR receptors in neurons. Our results support the functional versatility and adaptive nature of the MoeA scaffold, which has been repurposed independently both in eukaryotes and bacteria to carry out analogous functions in network organization at the cell membrane.
Collapse
Affiliation(s)
- Daniela Megrian
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur de Montevideo, Bioinformatics Unit, 11200 Montevideo, Uruguay
| | - Mariano Martinez
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Pedro M Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| |
Collapse
|
5
|
Hagen WR. The Development of Tungsten Biochemistry-A Personal Recollection. Molecules 2023; 28:molecules28104017. [PMID: 37241758 DOI: 10.3390/molecules28104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
6
|
Tiedemann K, Iobbi-Nivol C, Leimkühler S. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Molecules 2022; 27:molecules27092993. [PMID: 35566344 PMCID: PMC9103625 DOI: 10.3390/molecules27092993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.
Collapse
Affiliation(s)
- Kim Tiedemann
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Chantal Iobbi-Nivol
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, CEDEX 09, 13402 Marseille, France;
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
- Correspondence:
| |
Collapse
|
7
|
Fernandes C, Taurino I. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. SENSORS 2022; 22:s22083062. [PMID: 35459047 PMCID: PMC9027146 DOI: 10.3390/s22083062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
Close monitoring of vital physiological parameters is often key in following the evolution of certain medical conditions (e.g., diabetes, infections, post-operative status or post-traumatic injury). The allocation of trained medical staff and specialized equipment is, therefore, necessary and often translates into a clinical and economic burden on modern healthcare systems. As a growing field, transient electronics may establish fully bioresorbable medical devices capable of remote real-time monitoring of therapeutically relevant parameters. These devices could alert remote medical personnel in case of any anomaly and fully disintegrate in the body without a trace. Unfortunately, the need for a multitude of biodegradable electronic components (power supplies, wires, circuitry) in addition to the electrochemical biosensing interface has halted the arrival of fully bioresorbable electronically active medical devices. In recent years molybdenum (Mo) and tungsten (W) have drawn increasing attention as promising candidates for the fabrication of both energy-powered active (e.g., transistors and integrated circuits) and passive (e.g., resistors and capacitors) biodegradable electronic components. In this review, we discuss the latest Mo and W-based dissolvable devices for potential biomedical applications and how these soluble metals could pave the way towards next-generation fully transient implantable electronic systems.
Collapse
Affiliation(s)
- Catarina Fernandes
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Correspondence:
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Semiconductor Physics, Department of Physics and Astronomy (Semiconductor Physics), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium
| |
Collapse
|
8
|
A microbial solution to oil sand pollution: Understanding the microbiomes, metabolic pathways and mechanisms involved in naphthenic acid (NA) biodegradation. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
McKew BA, Johnson R, Clothier L, Skeels K, Ross MS, Metodiev M, Frenzel M, Gieg LM, Martin JW, Hough MA, Whitby C. Differential protein expression during growth on model and commercial mixtures of naphthenic acids in Pseudomonas fluorescens Pf-5. Microbiologyopen 2021; 10:e1196. [PMID: 34459546 PMCID: PMC8289671 DOI: 10.1002/mbo3.1196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
Naphthenic acids (NAs) are carboxylic acids with the formula (Cn H2n+Z O2 ) and are among the most toxic, persistent constituents of oil sands process-affected waters (OSPW), produced during oil sands extraction. Currently, the proteins and mechanisms involved in NA biodegradation are unknown. Using LC-MS/MS shotgun proteomics, we identified proteins overexpressed during the growth of Pseudomonas fluorescens Pf-5 on a model NA (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and commercial NA mixture (Acros). By day 11, >95% of n-BPBA was degraded. With Acros, a 17% reduction in intensity occurred with 10-18 carbon compounds of the Z family -2 to -14 (major NA species in this mixture). A total of 554 proteins (n-BPBA) and 631 proteins (Acros) were overexpressed during growth on NAs, including several transporters (e.g., ABC transporters), suggesting a cellular protective response from NA toxicity. Several proteins associated with fatty acid, lipid, and amino acid metabolism were also overexpressed, including acyl-CoA dehydrogenase and acyl-CoA thioesterase II, which catalyze part of the fatty acid beta-oxidation pathway. Indeed, multiple enzymes involved in the fatty acid oxidation pathway were upregulated. Given the presumed structural similarity between alkyl-carboxylic acid side chains and fatty acids, we postulate that P. fluorescens Pf-5 was using existing fatty acid catabolic pathways (among others) during NA degradation.
Collapse
Affiliation(s)
- Boyd A. McKew
- School of Life SciencesUniversity of EssexColchesterUK
| | | | - Lindsay Clothier
- Canada's Oil Sands Innovation AllianceCalgaryABCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | - Karl Skeels
- School of Life SciencesUniversity of EssexColchesterUK
| | - Matthew S. Ross
- Department of Physical SciencesMacEwan UniversityEdmontonABCanada
| | | | | | - Lisa M. Gieg
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | | | | |
Collapse
|
11
|
Sachdeva S, Maret W. Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate. Toxicol Mech Methods 2021; 31:690-698. [PMID: 34320920 DOI: 10.1080/15376516.2021.1956031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tungsten has no known function in humans and is a relatively new contaminant, whereas molybdenum, its congener in the periodic table, is a nutritionally essential element. In addition to early studies on molybdosis in ruminants, their toxic effects in the form of tungstate and molybdate have been addressed primarily in rodents and are predominantly mediated by inducing oxidative stress in various tissues. The purpose of this study was to evaluate the differences between tungstate and molybdate in human liver (HepG2) and kidney (HEK293) cell lines in terms of retention in cells, effect on reactive oxygen species, and activities of xanthine oxidase and phosphatases. The cell lines were exposed to tungstate or molybdate (1 µM to 10 mM) for 24 h, lysed and analyzed for the above biochemical parameters. Despite the chemical similarity of the two anions, cell-specific differential effects were observed. At all concentrations, tungstate was retained more in HEK293 cells while molybdate was retained more in HepG2 cells. HepG2 cells were more sensitive to tungstate than molybdate, showing reduced viability at concentrations as low as 10 µM. Exposure to either anion resulted in the inhibition of protein tyrosine phosphatases at 1 mM and an increased production of reactive oxygen species (ROS) at 100 µM despite their inhibition of the ROS-producing molybdenum enzyme xanthine oxidase. In conclusion, the results indicate that excess of nutritionally essential molybdate or non-essential tungstate causes toxicity by affecting ROS- and phosphorylation-dependent signaling pathways and ensuing gene expression.
Collapse
Affiliation(s)
- Sherry Sachdeva
- Division of Regulatory Toxicology, Defence Research Development Establishment, Gwalior, India
| | - Wolfgang Maret
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Alves RJE, Kerou M, Zappe A, Bittner R, Abby SS, Schmidt HA, Pfeifer K, Schleper C. Ammonia Oxidation by the Arctic Terrestrial Thaumarchaeote Candidatus Nitrosocosmicus arcticus Is Stimulated by Increasing Temperatures. Front Microbiol 2019; 10:1571. [PMID: 31379764 PMCID: PMC6657660 DOI: 10.3389/fmicb.2019.01571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Climate change is causing arctic regions to warm disproportionally faster than those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and potentially higher greenhouse gas emissions. It is thus increasingly important to better characterize the microorganisms driving arctic biogeochemical processes and their potential responses to changing conditions. Here, we describe a novel thaumarchaeon enriched from an arctic soil, Candidatus Nitrosocosmicus arcticus strain Kfb, which has been maintained for seven years in stable laboratory enrichment cultures as an aerobic ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that this organism harbors all genes involved in ammonia oxidation and in carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism, similar to other AOA. Ca. N. arcticus oxidizes ammonia optimally between 20 and 28°C, well above average temperatures in its native high arctic environment (-13-4°C). Ammonia oxidation rates were nevertheless much lower than those of most cultivated mesophilic AOA (20-45°C). Intriguingly, we repeatedly observed apparent faster growth rates (based on marker gene counts) at lower temperatures (4-8°C) but without detectable nitrite production. Together with potential metabolisms predicted from its genome content, these observations indicate that Ca. N. arcticus is not a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a greater metabolic and physiological versatility of AOA. The physiology of Ca. N. arcticus suggests that increasing temperatures might drastically affect nitrification in arctic soils by stimulating archaeal ammonia oxidation.
Collapse
Affiliation(s)
- Ricardo J Eloy Alves
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Anna Zappe
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Romana Bittner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Sophie S Abby
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Coimbra C, Branco R, Morais PV. Efficient bioaccumulation of tungsten by Escherichia coli cells expressing the Sulfitobacter dubius TupBCA system. Syst Appl Microbiol 2019; 42:126001. [PMID: 31326140 DOI: 10.1016/j.syapm.2019.126001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023]
Abstract
Tungsten (W) is a valuable element with considerable industrial and economic importance that belongs to the European Union list of critical metals with a high supply risk. Therefore, the development of effective and new methods for W recovery is essential to ensure a sustainable supply. In the present study, the Sulfitobacter dubius W transport system TupABC was explored in order to demonstrate both its functionality in Escherichia coli cells and to construct a bioaccumulator (EcotupW). The complete gene cluster tupBCA or partial gene cluster tupBC were cloned in an expression vector and transformed into E. coli. Metal accumulation was evaluated when each construct strain was grown with three separate metal oxyanions (tungstate, molybdate or chromate). The specificity of the bioaccumulator was determined by competition assays using cells grown with mixed solutions of metal oxyanions (W/Mo and W/Cr). The results showed the relevance of the TupA protein in the TupABC transporter system to W-uptake and also allowed Mo and Cr accumulations, although with amounts 1.7 and 2.9-fold lower than W, respectively. To identify the importance of the valine residue in the accumulation efficiency of the VTTS motif, site-directed mutagenesis of tupA was performed. A mutant with a threonine residue, instead of the respective valine, confirmed that W was internalized by nearly double the amount compared to the native form. The findings indicated that cells carrying the native S. dubius TupABC system were great W-bioaccumulators and could be promising tools for W recovery.
Collapse
Affiliation(s)
- C Coimbra
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal
| | - R Branco
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal.
| | - P V Morais
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal
| |
Collapse
|
15
|
Preiner J, Wienkoop S, Weckwerth W, Oburger E. Molecular Mechanisms of Tungsten Toxicity Differ for Glycine max Depending on Nitrogen Regime. FRONTIERS IN PLANT SCIENCE 2019; 10:367. [PMID: 31001297 PMCID: PMC6454624 DOI: 10.3389/fpls.2019.00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 05/06/2023]
Abstract
Tungsten (W) finds increasing application in military, aviation and household appliance industry, opening new paths into the environment. Since W shares certain chemical properties with the essential plant micronutrient molybdenum (Mo), it is proposed to inhibit enzymatic activity of molybdoenzymes [e.g., nitrate reductase (NR)] by replacing the Mo-ion bound to the co-factor. Recent studies suggest that W, much like other heavy metals, also exerts toxicity on its own. To create a comprehensive picture of tungsten stress, this study investigated the effects of W on growth and metabolism of soybean (Glycine max), depending on plant nitrogen regime [nitrate fed (N fed) vs. symbiotic N2 fixation (N fix)] by combining plant physiological data (biomass production, starch and nutrient content, N2 fixation, nitrate reductase activity) with root and nodule proteome data. Irrespective of N regime, NR activity and total N decreased with increasing W concentrations. Nodulation and therefore also N2 fixation strongly declined at high W concentrations, particularly in N fix plants. However, N2 fixation rate (g N fixed g-1 nodule dwt) remained unaffected by increasing W concentrations. Proteomic analysis revealed a strong decline in leghemoglobin and nitrogenase precursor levels (NifD), as well as an increase in abundance of proteins involved in secondary metabolism in N fix nodules. Taken together this indicates that, in contrast to the reported direct inhibition of NR, N2 fixation appears to be indirectly inhibited by a decrease in nitrogenase synthesis due to W induced changes in nodule oxygen levels of N fix plants. Besides N metabolism, plants exhibited a strong reduction of shoot (both N regimes) and root (N fed only) biomass, an imbalance in nutrient levels and a failure of carbon metabolic pathways accompanied by an accumulation of starch at high tungsten concentrations, independent of N-regime. Proteomic data (available via ProteomeXchange with identifier PXD010877) demonstrated that the response to high W concentrations was independent of nodule functionality and dominated by several peroxidases and other general stress related proteins. Based on an evaluation of several W responsive proteotypic peptides, we identified a set of protein markers of W stress and possible targets for improved stress tolerance.
Collapse
Affiliation(s)
- Julian Preiner
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Physiological and genomic insights into the lifestyle of arsenite-oxidizing Herminiimonas arsenitoxidans. Sci Rep 2017; 7:15007. [PMID: 29101383 PMCID: PMC5670224 DOI: 10.1038/s41598-017-15164-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
Arsenic, a representative toxic metalloid, is responsible for serious global health problems. Most organisms possess arsenic resistance strategies to mitigate this toxicity. Here, we reported a microorganism, strain AS8, from heavy metal/metalloid-contaminated soil that is able to oxidize arsenite, and investigated its physiological and genomic traits. Its cells were rod-shaped and Gram-negative, and formed small beige-pigmented colonies. 16S rRNA-based phylogenetic analysis indicated that the strain belongs to the genus Herminiimonas and is closely related to Herminiimonas glaciei UMB49T (98.7% of 16S rRNA gene sequence similarity), Herminiimonas arsenicoxydans ULPAs1T (98.4%), and Herminiimonas saxobsidens NS11T (98.4%). Under chemolithoheterotrophic conditions, the strain utilized some organic acids and amino acids as carbon and/or nitrogen sources but not electron sources. Further, the strain grew as a sulfur oxidizer in a complex medium (trypticase soy agar). Unexpectedly, most carbohydrates failed to support its growth as sole carbon sources. Genome sequencing supported these observations, and very few ABC transporters capable of oligo/monosaccharide uptake were identified in the AS8 genome. The genome harbored genes required for the colonization, flagella biosynthesis, urea degradation, and heavy metal and antibiotic resistance. Based on these polyphasic and genomic analyses, we propose that the strain AS8 be named Herminiimonas arsenitoxidans.
Collapse
|
17
|
Coimbra C, Farias P, Branco R, Morais PV. Tungsten accumulation by highly tolerant marine hydrothermal Sulfitobacter dubius strains carrying a tupBCA cluster. Syst Appl Microbiol 2017; 40:388-395. [DOI: 10.1016/j.syapm.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
18
|
Otrelo-Cardoso AR, Nair RR, Correia MAS, Cordeiro RSC, Panjkovich A, Svergun DI, Santos-Silva T, Rivas MG. Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20. Sci Rep 2017; 7:5798. [PMID: 28724964 PMCID: PMC5517513 DOI: 10.1038/s41598-017-06133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022] Open
Abstract
Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO42−, WO42− and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.
Collapse
Affiliation(s)
- Ana Rita Otrelo-Cardoso
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Rashmi R Nair
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Raquel S Correia Cordeiro
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,Ruhr-Universität Bochum, Universitätsstraße, 150/44780, Bochum, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Teresa Santos-Silva
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria G Rivas
- Department of Physics, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina.
| |
Collapse
|
19
|
Qin S, Sun X, Hu C, Tan Q, Zhao X, Xu S. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:87-93. [PMID: 28167042 DOI: 10.1016/j.plantsci.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo1 (1μmol/L Mo, Low Mo), Mo1+W1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo200 (200μmol/L Mo, High Mo) and Mo200+W200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress.
Collapse
Affiliation(s)
- Shiyu Qin
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xuecheng Sun
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China.
| | - Chengxiao Hu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Qiling Tan
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xiaohu Zhao
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Shoujun Xu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| |
Collapse
|
20
|
Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. Acta Biomater 2016; 45:410-418. [PMID: 27581397 DOI: 10.1016/j.actbio.2016.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022]
Abstract
We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. STATEMENT OF SIGNIFICANCE We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and study of metal-protein interactions, enabling understanding of the ongoing problem associated with the biotribocorrosion and the link to inflammation associated with Metal-on-Metal (MoM) hip implants made from CoCrMo alloys.
Collapse
|
21
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
22
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
23
|
TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20. Int J Mol Sci 2014; 15:11783-98. [PMID: 24992597 PMCID: PMC4139814 DOI: 10.3390/ijms150711783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022] Open
Abstract
The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.
Collapse
|
24
|
Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol 2013; 16:1592-611. [DOI: 10.1111/1462-2920.12314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/13/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Hang Yu
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Joshua A. Steele
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Katherine S. Dawson
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Shulei Sun
- The CAMERA Project; University of California San Diego; San Diego CA 92093 USA
| | - Karuna Chourey
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Chongle Pan
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Robert L. Hettich
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| |
Collapse
|
25
|
Abstract
The transition element molybdenum needs to be complexed by a special cofactor to gain catalytic activity. Molybdenum is bound to a unique pterin, thus forming the molybdenum cofactor (Moco), which, in different variants, is the active compound at the catalytic site of all molybdenum-containing enzymes in nature, except bacterial molybdenum nitrogenase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also require iron, ATP, and copper. After its synthesis, Moco is distributed, involving Moco-binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms.
Collapse
Affiliation(s)
- Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| |
Collapse
|
26
|
Tombline G, Schwingel JM, Lapek JD, Friedman AE, Darrah T, Maguire M, Van Alst NE, Filiatrault MJ, Iglewski BH. Pseudomonas aeruginosa PA1006 is a persulfide-modified protein that is critical for molybdenum homeostasis. PLoS One 2013; 8:e55593. [PMID: 23409003 PMCID: PMC3568144 DOI: 10.1371/journal.pone.0055593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
A companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity. Yeast-two-hybrid and a green-fluorescent protein fragment complementation assay (GFP-PFCA) in Pae itself revealed that PA1006 interacts with Pae PA3667/CsdA and PA3814/IscS Cys desulfurase enzymes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) “top-down” analysis of PA1006 purified from Pae revealed that conserved Cys22 is post-translationally modified in vivo in the form a persulfide. Inductively-coupled-plasma (ICP)-MS analysis of ΔPA1006 mutant extracts revealed that the mutant cells contain significantly reduced levels of molybdenum compared to wild-type. GFP-PFCA also revealed that PA1006 interacts with several molybdenum cofactor (MoCo) biosynthesis proteins as well as nitrate reductase maturation factor NarJ and component NarH. These data indicate that a loss of PA1006 protein’s persulfide sulfur and a reduced availability of molybdenum contribute to the phenotype of a ΔPA1006 mutant.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
|
29
|
Iobbi-Nivol C, Leimkühler S. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012. [PMID: 23201473 DOI: 10.1016/j.bbabio.2012.11.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molybdenum cofactor (Moco) biosynthesis is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified in bacteria to date. In molybdoenzymes Mo is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into four general steps in bacteria: 1) formation of the cyclic pyranopterin monophosphate, 2) formation of MPT, 3) insertion of molybdenum into molybdopterin to form Moco, and 4) additional modification of Moco with the attachment of GMP or CMP to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on molybdoenzymes, the biosynthesis of Moco, and its incorporation into specific target proteins focusing on Escherichia coli. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Chantal Iobbi-Nivol
- Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
30
|
Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1568-79. [PMID: 22370186 DOI: 10.1016/j.bbamcr.2012.02.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
Abstract
The transition element molybdenum (Mo) needs to be complexed by a special cofactor in order to gain catalytic activity. With the exception of bacterial Mo-nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor Moco, which in different variants is the active compound at the catalytic site of all other Mo-containing enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also requires iron, ATP and copper. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. In humans, Moco deficiency is a severe inherited inborn error in metabolism resulting in severe neurodegeneration in newborns and causing early childhood death. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, 1 Humboldt Street, 38106 Braunschweig, Germany.
| | | |
Collapse
|
31
|
Tirado-Lee L, Lee A, Rees DC, Pinkett HW. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 2011; 19:1701-10. [PMID: 22078568 PMCID: PMC3258573 DOI: 10.1016/j.str.2011.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/11/2011] [Accepted: 10/09/2011] [Indexed: 01/07/2023]
Abstract
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.
Collapse
Affiliation(s)
- Leidamarie Tirado-Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Allen Lee
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
32
|
Reactive-oxygen-species-mediated Cdc25C degradation results in differential antiproliferative activities of vanadate, tungstate, and molybdate in the PC-3 human prostate cancer cell line. J Biol Inorg Chem 2011; 17:311-20. [PMID: 22012316 DOI: 10.1007/s00775-011-0852-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
The differential antiproliferative effects of vanadate, tungstate, and molybdate on human prostate cancer cell line PC-3 were compared and the underlying mechanisms were investigated. The results demonstrate that all of the three oxoanions can cause G(2)/M cell cycle arrest, which is evidenced by the increase in the level of phosphorylated Cdc2 at its inactive Tyr-15 site. Moreover, even if the difference in cellular uptake among the three oxoanions is excluded from the possible factors affecting their antiproliferative activity, vanadate exerted a much more potent effect in PC-3 cells than the other two oxoanions. Our results also reveal that reactive oxygen species (ROS)-mediated degradation of Cdc25C rather than Cdc25A or Cdc25B is responsible for vanadate-induced G(2)/M cell cycle arrest. We propose a possible mechanism to clarify the differential effect of the three oxoanions in biological systems beyond just considering that they are structural analogs of phosphate. We suggest that ROS formation is unlikely to be involved in the biological function of tungstate and molybdate, whereas the redox properties of vanadium may be important factors for it to exert pharmacological effects. Further, given the evidence from epidemiology studies of the association between diabetes and prostate cancer, the possibility of vanadate as a good candidate as both an antidiabetic and an anticancer agent or a chemopreventive agent is indicated.
Collapse
|
33
|
Aryal BP, Brugarolas P, He C. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications. J Biol Inorg Chem 2011; 17:97-106. [PMID: 21861186 DOI: 10.1007/s00775-011-0833-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/09/2011] [Indexed: 12/28/2022]
Abstract
Radiolabeled biomolecules are routinely used for clinical diagnostics. (99m)Tc is the most commonly used radioactive tracer in radiopharmaceuticals. (188)Re and (186)Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO(4)(-)) ion as a new way to label proteins. We found that a molybdate (MoO(4)(2-))-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO(4)(-) to be 541 nM and we solved a crystal structure of ModA with a bound ReO(4)(-). On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K(d) = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.
Collapse
Affiliation(s)
- Baikuntha P Aryal
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
34
|
A molecular basis for tungstate selectivity in prokaryotic ABC transport systems. J Bacteriol 2011; 193:4999-5001. [PMID: 21784948 DOI: 10.1128/jb.05056-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential trace compounds tungstate and molybdate are taken up by cells via ABC transporters. Despite their similar ionic radii and chemical properties, the WtpA protein selectively binds tungstate in the presence of molybdate. Using site-directed mutagenesis of conserved binding pocket residues, we established a molecular basis for tungstate selectivity.
Collapse
|