1
|
Zhu Y, Li Z, Zhong X, Wu X, Lu Y, Khan MA, Li H. Coordination Patterns of the Diphosphate in IDP Coordination Complexes: Crystal Structure and Chirality. Inorg Chem 2022; 61:19425-19439. [DOI: 10.1021/acs.inorgchem.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuan Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongqiu Lu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Martinez-Monge A, Pastor I, Bustamante C, Manosas M, Ritort F. Measurement of the specific and non-specific binding energies of Mg 2+ to RNA. Biophys J 2022; 121:3010-3022. [PMID: 35864738 PMCID: PMC9463699 DOI: 10.1016/j.bpj.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Determining the non-specific and specific electrostatic contributions of magnesium binding to RNA is a challenging problem. We introduce a single-molecule method based on measuring the folding energy of a native RNA in magnesium and at its equivalent sodium concentration. The latter is defined so that the folding energy in sodium equals the non-specific electrostatic contribution in magnesium. The sodium equivalent can be estimated according to the empirical 100/1 rule (1 M NaCl is equivalent to 10 mM MgCl2), which is a good approximation for most RNAs. The method is applied to an RNA three-way junction (3WJ) that contains specific Mg2+ binding sites and misfolds into a double hairpin structure without binding sites. We mechanically pull the RNA with optical tweezers and use fluctuation theorems to determine the folding energies of the native and misfolded structures in magnesium (10 mM MgCl2) and at the equivalent sodium condition (1 M NaCl). While the free energies of the misfolded structure are equal in magnesium and sodium, they are not for the native structure, the difference being due to the specific binding energy of magnesium to the 3WJ, which equals ΔG≃ 10 kcal/mol. Besides stabilizing the 3WJ, Mg2+ also kinetically rescues it from the misfolded structure over timescales of tens of seconds in a force-dependent manner. The method should generally be applicable to determine the specific binding energies of divalent cations to other tertiary RNAs.
Collapse
Affiliation(s)
- A Martinez-Monge
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carlos Bustamante
- Departments of Chemistry, Physics and Molecular and Cell Biology, University of California Berkeley, Berkeley, California; Howard Hughes Medical Institute University of California Berkeley, Berkeley, California; Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Matreux T, Le Vay K, Schmid A, Aikkila P, Belohlavek L, Çalışkanoğlu AZ, Salibi E, Kühnlein A, Springsklee C, Scheu B, Dingwell DB, Braun D, Mutschler H, Mast CB. Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nat Chem 2021; 13:1038-1045. [PMID: 34446924 DOI: 10.1038/s41557-021-00772-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Catalytic nucleic acids, such as ribozymes, are central to a variety of origin-of-life scenarios. Typically, they require elevated magnesium concentrations for folding and activity, but their function can be inhibited by high concentrations of monovalent salts. Here we show that geologically plausible high-sodium, low-magnesium solutions derived from leaching basalt (rock and remelted glass) inhibit ribozyme catalysis, but that this activity can be rescued by selective magnesium up-concentration by heat flow across rock fissures. In contrast to up-concentration by dehydration or freezing, this system is so far from equilibrium that it can actively alter the Mg:Na salt ratio to an extent that enables key ribozyme activities, such as self-replication and RNA extension, in otherwise challenging solution conditions. The principle demonstrated here is applicable to a broad range of salt concentrations and compositions, and, as such, highly relevant to various origin-of-life scenarios.
Collapse
Affiliation(s)
- T Matreux
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - K Le Vay
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Schmid
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - P Aikkila
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - L Belohlavek
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - A Z Çalışkanoğlu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - E Salibi
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Kühnlein
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - C Springsklee
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - B Scheu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D B Dingwell
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D Braun
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | | | - C B Mast
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
4
|
Xi K, Wang FH, Xiong G, Zhang ZL, Tan ZJ. Competitive Binding of Mg 2+ and Na + Ions to Nucleic Acids: From Helices to Tertiary Structures. Biophys J 2019; 114:1776-1790. [PMID: 29694858 DOI: 10.1016/j.bpj.2018.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.
Collapse
Affiliation(s)
- Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Gui Xiong
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Arjmand F, Afsan Z, Sharma S, Parveen S, Yousuf I, Sartaj S, Siddique HR, Tabassum S. Recent advances in metallodrug-like molecules targeting non-coding RNAs in cancer chemotherapy. Coord Chem Rev 2019; 387:47-59. [DOI: 10.1016/j.ccr.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Leonarski F, D'Ascenzo L, Auffinger P. Nucleobase carbonyl groups are poor Mg 2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. RNA (NEW YORK, N.Y.) 2019; 25:173-192. [PMID: 30409785 PMCID: PMC6348993 DOI: 10.1261/rna.068437.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/16/2018] [Indexed: 05/04/2023]
Abstract
Precise knowledge of Mg2+ inner-sphere binding site properties is vital for understanding the structure and function of nucleic acid systems. Unfortunately, the PDB, which represents the main source of Mg2+ binding sites, contains a substantial number of assignment issues that blur our understanding of the functions of these ions. Here, following a previous study devoted to Mg2+ binding to nucleobase nitrogens, we surveyed nucleic acid X-ray structures from the PDB with resolutions ≤2.9 Å to classify the Mg2+ inner-sphere binding patterns to nucleotide carbonyl, ribose hydroxyl, cyclic ether, and phosphodiester oxygen atoms. From this classification, we derived a set of "prior-knowledge" nucleobase Mg2+ binding sites. We report that crystallographic examples of trustworthy nucleobase Mg2+ binding sites are fewer than expected since many of those are associated with misidentified Na+ or K+ We also emphasize that binding of Na+ and K+ to nucleic acids is much more frequent than anticipated. Overall, we provide evidence derived from X-ray structures that nucleobases are poor inner-sphere binders for Mg2+ but good binders for monovalent ions. Based on strict stereochemical criteria, we propose an extended set of guidelines designed to help in the assignment and validation of ions directly contacting nucleobase and ribose atoms. These guidelines should help in the interpretation of X-ray and cryo-EM solvent density maps. When borderline Mg2+ stereochemistry is observed, alternative placement of Na+, K+, or Ca2+ must be considered. We also critically examine the use of lanthanides (Yb3+, Tb3+) as Mg2+ substitutes in crystallography experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| |
Collapse
|
7
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
8
|
Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding. J Biol Inorg Chem 2017; 23:167-177. [DOI: 10.1007/s00775-017-1519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
9
|
Leonarski F, D'Ascenzo L, Auffinger P. Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res 2017; 45:987-1004. [PMID: 27923930 PMCID: PMC5314772 DOI: 10.1093/nar/gkw1175] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Luigi D'Ascenzo
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Affiliation(s)
- Ashley M. Jolly
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL35487-0336, USA
| | - Marco Bonizzoni
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL35487-0336, USA
| |
Collapse
|
11
|
Rowinska-Zyrek M, Skilandat M, Sigel RKO. Hexaamminecobalt(III) - Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Domínguez-Martín A, Johannsen S, Sigel A, Operschall BP, Song B, Sigel H, Okruszek A, González-Pérez JM, Niclós-Gutiérrez J, Sigel RKO. Intrinsic acid-base properties of a hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT): neighboring effects and isomeric equilibria. Chemistry 2013; 19:8163-81. [PMID: 23595830 DOI: 10.1002/chem.201203330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/09/2012] [Indexed: 02/02/2023]
Abstract
The intrinsic acid-base properties of the hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1∙G2∙G3∙C4∙C5∙T6)=(HNPP)⁵⁻] have been determined by ¹H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single-strand conditions (i.e., 10% D₂O, 47 °C, I=0.1 M, NaClO₄). These results quantify the release of H⁺ from the two (N7)H⁺ (G∙G), the two (N3)H⁺ (C∙C), and the (N1)H⁺ (A) units, as well as from the two (N1)H (G∙G) and the (N3)H (T) sites. Based on measurements with 2'-deoxynucleosides at 25 °C and 47 °C, they were transferred to pKa values valid in water at 25 °C and I=0.1 M. Intramolecular stacks between the nucleobases A1 and G2 as well as most likely also between G2 and G3 are formed. For HNPP three pKa clusters occur, that is those encompassing the pKa values of 2.44, 2.97, and 3.71 of G2(N7)H⁺, G3(N7)H⁺, and A1(N1)H⁺, respectively, with overlapping buffer regions. The tautomer populations were estimated, giving for the release of a single proton from five-fold protonated H₅(HNPP)(±) , the tautomers (G2)N7, (G3)N7, and (A1)N1 with formation degrees of about 74, 22, and 4%, respectively. Tautomer distributions reveal pathways for proton-donating as well as for proton-accepting reactions both being expected to be fast and to occur practically at no "cost". The eight pKa values for H₅(HNPP)(±) are compared with data for nucleosides and nucleotides, revealing that the nucleoside residues are in part affected very differently by their neighbors. In addition, the intrinsic acidity constants for the RNA derivative r(A1∙G2∙G3∙C4∙C5∙U6), where U=uridine, were calculated. Finally, the effect of metal ions on the pKa values of nucleobase sites is briefly discussed because in this way deprotonation reactions can easily be shifted to the physiological pH range.
Collapse
Affiliation(s)
- Alicia Domínguez-Martín
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Korth MMT, Sigel RKO. Unusually high-affinity Mg(2+) binding at the AU-rich sequence within the antiterminator hairpin of a Mg(2+) riboswitch. Chem Biodivers 2013; 9:2035-49. [PMID: 22976989 DOI: 10.1002/cbdv.201200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mg(2+)-Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+)-transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+)-binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+)-binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+)-binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.
Collapse
Affiliation(s)
- Maximiliane M T Korth
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (phone: +41 44 635 4652; fax: +41 44 635 6802)
| | | |
Collapse
|
14
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|