1
|
Holoubek A, Strachotová D, Wolfová K, Otevřelova P, Belejová S, Röselová P, Benda A, Brodská B, Herman P. Correlation of p53 oligomeric status and its subcellular localization in the presence of the AML-associated NPM mutant. PLoS One 2025; 20:e0322096. [PMID: 40334261 PMCID: PMC12058200 DOI: 10.1371/journal.pone.0322096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/17/2025] [Indexed: 05/09/2025] Open
Abstract
Tumor suppressor p53 is a key player in the cell response to DNA damage that suffers by frequent inactivating aberrations. Some of them disturb p53 oligomerization and influence cell decision between proliferation, growth arrest and apoptosis. Active p53 resides mostly in the nucleus, degradation occurs in the cytoplasm. Acute myeloid leukemia (AML)-related mutation of NPM (NPMmut) induces massive mislocalization of p53 to the cytoplasm, which might be related to leukemia initiation. Since both proteins interact and execute their function as oligomers, we investigated the role of perturbed p53 oligomerization in the p53 mislocalization process in live cells by FLIM (fluorescence lifetime imaging microscopy), fluorescence anisotropy imaging (FAIM), fluorescence cross-correlation spectroscopy (FCCS) and immunochemical methods. On a set of fluorescently labeled p53 variants, monomeric R337G and L344P, dimeric L344A, and multimeric D352G and A353S, we correlated their cellular localization, oligomerization and interaction with NPMmut. Interplay between nuclear export signal (NES) and nuclear localization signal (NLS) of p53 was investigated as well. While NLS was found critical for the nuclear p53 localization, NES plays less significant role. We observed cytoplasmic translocation only for multimeric A353S variant with sufficient stability and strong interaction with NPMmut. Less stable multimer D352G and L344A dimer were not translocated, monomeric p53 variants always resided in the nucleus independently of the presence of NPMmut and NES intactness. Oligomeric state of NPMmut is not required for p53 translocation, which happens also in the presence of the nonoligomerizing NPMmut variant. The prominent structural and functional role of the R337 residue is shown.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | - Kateřina Wolfová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petra Otevřelova
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Sára Belejová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Kim JY, Furney A, Benner B, Sengupta A. Stress-induced changes in endogenous TP53 mRNA 5' regulatory region. J Biol Chem 2025; 301:108418. [PMID: 40113043 PMCID: PMC12018109 DOI: 10.1016/j.jbc.2025.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumor suppressor protein p53 is regulated in a number of ways, including during initiation of TP53 mRNA translation. The 5' end of TP53 mRNA contains regulatory structures that enable noncanonical initiation using mechanisms that remain poorly described. Here we analyze per-nucleotide reactivity changes in the 5' end secondary structure of TP53 mRNA under in-cell conditions using A549 human lung carcinoma cells. We first construct a cell-free secondary structure model using SHAPE reagent 5-nitroisatoic anhydride on gently extracted and deproteinated RNA. We observe previously described regulatory features of the TP53 mRNA 5' end including two motifs which we refer to as long stem-loop (LSL) and short stem-loop (SSL), respectively. We observe a domain-forming helix that groups LSL and SSL, forming a three-helix junction. Applying in-cell selective 2' hydroxyl acylation analyzed by primer extension and mutational profiling, we assess reactivity profiles with unstressed cells and with chemically induced stress conditions expected to stimulate TP53 cap-independent translation. We analyze the effects of etoposide-induced DNA damage, CoCl2-induced hypoxia, and 5' cap inhibition with 4EGI-1 treatment. Identifying stress-associated changes in the TP53 5' end may help elucidate the role of regulatory RNA structure in cap-independent translation. Using ΔSHAPE, we identify in-cell protection sites that correspond with previously described RNA-protein binding sites on the apical loops of LSL and SSL. Furthermore, we identify several other potential interaction sites, some associated with specific types of stress. Some noteworthy changes include ΔSHAPE sites proximal to the start codons, at the three-helix junction and on the domain-forming helix. We summarize potential interactions on the cell-free secondary structure model.
Collapse
Affiliation(s)
- Jin Yeong Kim
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, Georgia, USA
| | - Alexandra Furney
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, Georgia, USA
| | - Brittany Benner
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, Georgia, USA
| | - Arnab Sengupta
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, Georgia, USA.
| |
Collapse
|
3
|
Zhu IY, Lloyd A, Critchley WR, Saikia Q, Jade D, Divan A, Zeqiraj E, Harrison MA, Brown CJ, Ponnambalam S. Structure and function of MDM2 and MDM4 in health and disease. Biochem J 2025; 482:BCJ20240757. [PMID: 39960347 PMCID: PMC12096895 DOI: 10.1042/bcj20240757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 05/09/2025]
Abstract
Both mouse double-minute 2 (MDM2), an E3 ubiquitin ligase, and its closely related paralog, MDM4, which lacks E3 activity, play central roles in cellular homeostasis. MDM-linked dysfunction is associated with an increased risk of oncogenesis, primarily through targeting the tumor suppressor protein p53 for ubiquitination and degradation. Recent studies have revealed multifaceted roles of MDM proteins that are p53 independent with implications for their oncogenic properties. This review aims to provide an overview of MDM2 and MDM4, by assessing gene and protein structure and implications for protein-protein interactions and functions in cell and animal physiology. We also explore MDM2 and MDM4 role(s) in angiogenesis, a critical feature of solid tumor growth and progression. Finally, we discuss the current landscape in the development of MDM2 and MDM4 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Ivy Yiyi Zhu
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Alec Lloyd
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - William R. Critchley
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Queen Saikia
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Dhananjay Jade
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Aysha Divan
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Elton Zeqiraj
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael A. Harrison
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Christopher J. Brown
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
4
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
6
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
7
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
8
|
Goswami B, Nag S, Ray PS. Fates and functions of RNA-binding proteins under stress. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1825. [PMID: 38014833 DOI: 10.1002/wrna.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Exposure to stress activates a well-orchestrated set of changes in gene expression programs that allow the cell to cope with and adapt to the stress, or undergo programmed cell death. RNA-protein interactions, mediating all aspects of post-transcriptional regulation of gene expression, play crucial roles in cellular stress responses. RNA-binding proteins (RBPs), which interact with sequence/structural elements in RNAs to control the steps of RNA metabolism, have therefore emerged as central regulators of post-transcriptional responses to stress. Following exposure to a variety of stresses, the dynamic alterations in the RNA-protein interactome enable cells to respond to intracellular or extracellular perturbations by causing changes in mRNA splicing, polyadenylation, stability, translation, and localization. As RBPs play a central role in determining the cellular proteome both qualitatively and quantitatively, it has become increasingly evident that their abundance, availability, and functions are also highly regulated in response to stress. Exposure to stress initiates a series of signaling cascades that converge on post-translational modifications (PTMs) of RBPs, resulting in changes in their subcellular localization, association with stress granules, extracellular export, proteasomal degradation, and RNA-binding activities. These alterations in the fate and function of RBPs directly impact their post-transcriptional regulatory roles in cells under stress. Adopting the ubiquitous RBP HuR as a prototype, three scenarios illustrating the changes in nuclear-cytoplasmic localization, RNA-binding activity, export and degradation of HuR in response to inflammation, genotoxic stress, and heat shock depict the complex and interlinked regulatory mechanisms that control the fate and functions of RBPs under stress. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| |
Collapse
|
9
|
Norkaew C, Subkorn P, Chatupheeraphat C, Roytrakul S, Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci Rep 2023; 13:8084. [PMID: 37208425 DOI: 10.1038/s41598-023-35193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Paweena Subkorn
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
10
|
Fusée L, Salomao N, Ponnuswamy A, Wang L, López I, Chen S, Gu X, Polyzoidis S, Vadivel Gnanasundram S, Fahraeus R. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ 2023; 30:1072-1081. [PMID: 36813920 PMCID: PMC10070458 DOI: 10.1038/s41418-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular stress conditions activate p53-dependent pathways to counteract the inflicted damage. To achieve the required functional diversity, p53 is subjected to numerous post-translational modifications and the expression of isoforms. Little is yet known how p53 has evolved to respond to different stress pathways. The p53 isoform p53/47 (p47 or ΔNp53) is linked to aging and neural degeneration and is expressed in human cells via an alternative cap-independent translation initiation from the 2nd in-frame AUG at codon 40 (+118) during endoplasmic reticulum (ER) stress. Despite an AUG codon in the same location, the mouse p53 mRNA does not express the corresponding isoform in either human or mouse-derived cells. High-throughput in-cell RNA structure probing shows that p47 expression is attributed to PERK kinase-dependent structural alterations in the human p53 mRNA, independently of eIF2α. These structural changes do not take place in murine p53 mRNA. Surprisingly, PERK response elements required for the p47 expression are located downstream of the 2nd AUG. The data show that the human p53 mRNA has evolved to respond to PERK-mediated regulation of mRNA structures in order to control p47 expression. The findings highlight how p53 mRNA co-evolved with the function of the encoded protein to specify p53-activities under different cellular conditions.
Collapse
Affiliation(s)
- Leila Fusée
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | - Norman Salomao
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | | | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Sa Chen
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Stavros Polyzoidis
- Department of Neurosurgery, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Robin Fahraeus
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France. .,Department of Medical Biosciences, Umea University, 90185, Umea, Sweden. .,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653, Brno, Czech Republic.
| |
Collapse
|
11
|
Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int J Mol Sci 2023; 24:ijms24032605. [PMID: 36768922 PMCID: PMC9917219 DOI: 10.3390/ijms24032605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, long non-coding RNAs (lncRNAs) have witnessed a steep rise in interest amongst the scientific community. Because of their functional significance in several biological processes, i.e., alternative splicing, epigenetics, cell cycle, dosage compensation, and gene expression regulation, lncRNAs have transformed our understanding of RNA's regulatory potential. However, most knowledge concerning lncRNAs comes from mammals, and our understanding of the potential role of lncRNAs amongst insects remains unclear. Technological advances such as RNA-seq have enabled entomologists to profile several hundred lncRNAs in insect species, although few are functionally studied. This article will review experimentally validated lncRNAs from different insects and the lncRNAs identified via bioinformatic tools. Lastly, we will discuss the existing research challenges and the future of lncRNAs in insects.
Collapse
|
12
|
Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The Elephant evolved p53 isoforms that escape mdm2-mediated repression and cancer. Mol Biol Evol 2022; 39:6632613. [PMID: 35792674 PMCID: PMC9279639 DOI: 10.1093/molbev/msac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53–MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53–MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto’s Paradox.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Mia-Lyn Jooste
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
- Department of Medical Biosciences, Umeå University , 90185 Umeå , Sweden
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
| | - Fritz Vollrath
- Department of Zoology, Zoology Research and Administration Building, University of Oxford , Oxford, UK
- Save the Elephants Marula Manor , Marula Lane, Karen P.O. Box 54667. Nairobi 00200. Kenya Office: +254 720 441 178
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain
| |
Collapse
|
13
|
LIN28B inhibition sensitizes cells to p53-restoring PPI therapy through unleashed translational suppression. Oncogenesis 2022; 11:37. [PMID: 35780125 PMCID: PMC9250532 DOI: 10.1038/s41389-022-00412-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is the most highly mutated tumor suppressor across multiple types of human cancers. The level and function of p53 are fine-tuned through multifaced mechanisms in which the protein–protein interaction between p53 and MDM2 is considered as a major circuit. Recent studies suggest therapeutic strategy attempts to restore p53 function by small molecule inhibitors targeting p53–MDM2 interaction can be a promising direction in treating cancers with wild-type or functional p53. Currently, clinical tests of the p53–MDM2 protein–protein interaction inhibitors (PPIs) are underway. However, it remains elusive about the biomarkers that may predict the therapeutic responses to those inhibitors. Here we report that RNA-binding protein LIN28B directly regulates p53 through binding to the 5′΄ untranslated region of p53 mRNA and blocks its translation by competing with a translation enhancer protein, ribosomal protein L26 (RPL26). This regulatory mechanism of LIN28B does not involve let-7 maturation or the canonical protein turnover pathway of p53. Furthermore, we show that inhibition of LIN28B unleashes the translational suppression of p53 through RPL26, and leads to enhanced sensitivities of cancer cells to inhibitors of p53–MDM2 interaction. Together, we demonstrate a competitive regulatory mechanism of p53 by LIN28B, which has important implications in developing biomarkers to the therapies aiming to reinstate p53 function.
Collapse
|
14
|
Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput Biol 2022; 18:e1010264. [PMID: 35802572 PMCID: PMC9269748 DOI: 10.1371/journal.pcbi.1010264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics. Susceptibility to develop cancer varies among people, partially due to differences in genetic background. Ideally, healthy human-derived cells are used to investigate intracellular signaling pathways and their interindividual variability contributing to cancer susceptibility. Because cells from healthy human tissue are difficult to obtain and culture for periods longer than a few days, cell lines are often used as substitute. However, it is unclear to what extent signaling dynamics in cell lines represent dynamics in healthy human tissue. We asked whether we could reproduce interindividual variability in DNA damage response gene expression in a set of 50 human liver cell donors. Therefore, we built a mathematical model that simulates temporal expression dynamics of the DNA damage response in the HepG2 liver cell line upon chemical activation and used the simulations to create virtual donors. Our virtual donors displayed similar relations between genes as the samples from human donors, provided that we adjusted the strength of specific molecular interactions. Thus, our approach can be used to examine the applicability of widely used cell systems to healthy human tissue in terms of their dynamic responses.
Collapse
|
15
|
Cryptic in vitro ubiquitin ligase activity of HDMX towards p53 is likely regulated by an induced fit mechanism. Biosci Rep 2022; 42:231398. [PMID: 35674210 PMCID: PMC9254666 DOI: 10.1042/bsr20220186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
HDMX and its homologue HDM2 are two essential proteins for the cell; after genotoxic stress, both are phosphorylated near to their RING domain, specifically at serine 403 and 395, respectively. Once phosphorylated, both can bind the p53 mRNA and enhance its translation; however, both recognise p53 protein and provoke its degradation under normal conditions. HDM2 has been well-recognised as an E3 ubiquitin ligase, whereas it has been reported that even with the high similarity between the RING domains of the two homologs, HDMX does not have the E3 ligase activity. Despite this, HDMX is needed for the proper p53 poly-ubiquitination. Phosphorylation at serine 395 changes the conformation of HDM2, helping to explain the switch in its activity, but no information on HDMX has been published. Here we study the conformation of HDMX and its phospho-mimetic mutant S403D, investigate its E3 ligase activity and dissect its binding with p53. We show that phospho-mutation does not change the conformation of the protein, but HDMX is indeed an E3 ubiquitin ligase in vitro; however, in vivo, no activity was found. We speculated that HDMX is regulated by induced fit, being able to switch activity accordingly to the specific partner as p53 protein, p53 mRNA or HDM2. Our results aim to contribute to the elucidation of the contribution of the HDMX to p53 regulation.
Collapse
|
16
|
Galhuber M, Michenthaler H, Heininger C, Reinisch I, Nössing C, Krstic J, Kupper N, Moyschewitz E, Auer M, Heitzer E, Ulz P, Birner-Gruenberger R, Liesinger L, Lenihan-Geels GN, Oster M, Spreitzer E, Zenezini Chiozzi R, Schulz TJ, Schupp M, Madl T, Heck AJR, Prokesch A. Complementary omics strategies to dissect p53 signaling networks under nutrient stress. Cell Mol Life Sci 2022; 79:326. [PMID: 35635656 PMCID: PMC9151573 DOI: 10.1007/s00018-022-04345-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022]
Abstract
Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity.
Collapse
Affiliation(s)
- Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Christoph Heininger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Peter Ulz
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060, Vienna, Austria
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060, Vienna, Austria
| | - Georgia Ngawai Lenihan-Geels
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Moritz Oster
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 10115, Berlin, Germany
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 10115, Berlin, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
17
|
Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization. Oncogene 2022; 41:2173-2186. [PMID: 35197571 PMCID: PMC8993692 DOI: 10.1038/s41388-022-02238-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere with the host defense against tumorigenesis. Here, we show that lipopolysaccharides from Klebsiella pneumoniae and other Enterobacteria strongly inhibit the host tumor suppressor p53 pathway through a novel mechanism of p53 regulation. We found that lipopolysaccharides destabilize TP53 mRNA through a TLR4-NF-κB-mediated inhibition of the RNA-binding factor Wig-1. Importantly, we show that K. pneumoniae disables two major tumor barriers, oncogene-induced DNA damage signaling and senescence, by impairing p53 transcriptional activity upon DNA damage and oncogenic stress. Furthermore, we found an inverse correlation between the levels of TLR4 and p53 mutation in colorectal tumors. Hence, our data suggest that the repression of p53 by Enterobacteria via TLR4 alleviates the selection pressure for p53 oncogenic mutations and shapes the genomic evolution of cancer.
Collapse
|
18
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
19
|
Schneider AFL, Kallen J, Ottl J, Reid PC, Ripoche S, Ruetz S, Stachyra TM, Hintermann S, Dumelin CE, Hackenberger CPR, Marzinzik AL. Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors. RSC Chem Biol 2021; 2:1661-1668. [PMID: 34977581 PMCID: PMC8637822 DOI: 10.1039/d1cb00056j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mouse double minute 2 homolog (MDM2, Hdm2) is an important negative regulator of the tumor suppressor p53. Using a mRNA based display technique to screen a library of >1012 in vitro-translated cyclic peptides, we have identified a macrocyclic ligand that shows picomolar potency on MDM2. X-Ray crystallography reveals a novel binding mode utilizing a unique pharmacophore to occupy the Phe/Trp/Leu pockets on MDM2. Conjugation of a cyclic cell-penetrating peptide (cCPP) to the initially non cell-permeable ligand enables cellular uptake and a pharmacodynamic response in SJSA-1 cells. The demonstrated enhanced intracellular availability of cyclic peptides that are identified by a display technology exemplifies a process for the application of intracellular tools for drug discovery projects.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Patrick C Reid
- PeptiDream, 3-25-23 Tonomachi Kawasaki-Ku Kanagawa 210-0821 Japan
| | - Sebastien Ripoche
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Stephan Ruetz
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | | | - Samuel Hintermann
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christoph E Dumelin
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany .,Humboldt Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Andreas L Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| |
Collapse
|
20
|
Tsao N, Brickner JR, Rodell R, Ganguly A, Wood M, Oyeniran C, Ahmad T, Sun H, Bacolla A, Zhang L, Lukinović V, Soll JM, Townley BA, Casanova AG, Tainer JA, He C, Vindigni A, Reynoird N, Mosammaparast N. Aberrant RNA methylation triggers recruitment of an alkylation repair complex. Mol Cell 2021; 81:4228-4242.e8. [PMID: 34686315 DOI: 10.1016/j.molcel.2021.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Rodell
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adit Ganguly
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clement Oyeniran
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Hua Sun
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisheng Zhang
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA
| | - Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Jennifer M Soll
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago IL 60637, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey. Int J Mol Sci 2021; 22:ijms221910590. [PMID: 34638930 PMCID: PMC8508851 DOI: 10.3390/ijms221910590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage.
Collapse
|
22
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
23
|
Kuchur OA, Kuzmina DO, Dukhinova MS, Shtil AA. The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development. Acta Naturae 2021; 13:65-76. [PMID: 34707898 PMCID: PMC8526179 DOI: 10.32607/actanaturae.11247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/24/2020] [Indexed: 12/05/2022] Open
Abstract
Survival mechanisms are activated in tumor cells in response to therapeutic ionizing radiation. This reduces a treatment's effectiveness. The p53, p63, and p73 proteins belonging to the family of proteins that regulate the numerous pathways of intracellular signal transduction play a key role in the development of radioresistance. This review analyzes the p53-dependent and p53-independent mechanisms involved in overcoming the resistance of tumor cells to radiation exposure.
Collapse
Affiliation(s)
- O. A. Kuchur
- ITMO University, Saint-Petersburg, 191002 Russia
| | | | | | - A. A. Shtil
- ITMO University, Saint-Petersburg, 191002 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
24
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
25
|
Salomao N, Karakostis K, Hupp T, Vollrath F, Vojtesek B, Fahraeus R. What do we need to know and understand about p53 to improve its clinical value? J Pathol 2021; 254:443-453. [DOI: 10.1002/path.5677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
| | - Ted Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- University of Edinburgh, Institute of Genetics and Molecular Medicine Edinburgh UK
| | - Friz Vollrath
- Department of Zoology, Zoology Research and Administration Building University of Oxford Oxford UK
| | | | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis Paris France
- University of Gdansk, International Centre for Cancer Vaccine Science Gdansk Poland
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| |
Collapse
|
26
|
Mathieu NA, Levin RH, Spratt DE. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Front Oncol 2021; 11:659049. [PMID: 33869064 PMCID: PMC8044464 DOI: 10.3389/fonc.2021.659049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.
Collapse
Affiliation(s)
- Nicholas A Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Rafael H Levin
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| |
Collapse
|
27
|
Fan Y, Fan H, Quan Z, Wu X. Ionizing Radiation Combined with PARP1 Inhibitor Reduces Radioresistance in Prostate Cancer with RB1/TP53 Loss. Cancer Invest 2021; 39:423-434. [PMID: 33683975 DOI: 10.1080/07357907.2021.1899200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor suppressor genes RB1 and TP53 are altered frequently in prostate cancer (PC), whether RB1 and TP53 inactivation promotes radioresistance remains unclear. Herein, we demonstrated that RB1 loss enhanced ionizing radiation (IR)-induced DNA damage to inhibit cell proliferation and promote cellular senescence through a TP53-dependent pathway in LNCaP cells. Furthermore, the stabilization of TP53 was regulated by ATM-mediated phosphorylation of MDM2 at Ser395. However, inactivation of RB1/TP53 reversed DNA damage-induced cellular senescence and promoted radiation survival. Importantly, combined with PARP1 inhibitor restored radiosensitivity. This finding provides a potential approach for the therapy of PC with RB1/TP53 inactivation.
Collapse
Affiliation(s)
- Yao Fan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XiaoHou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, Roosje P, Müller EJ. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol 2021; 220:211810. [PMID: 33604655 PMCID: PMC7898489 DOI: 10.1083/jcb.201908178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Hernandez‐Monge J, Martínez‐Sánchez M, Rousset‐Roman A, Medina‐Medina I, Olivares‐Illana V. MDM2 regulates RB levels during genotoxic stress. EMBO Rep 2021; 22:e50615. [PMID: 33185004 PMCID: PMC7788445 DOI: 10.15252/embr.202050615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023] Open
Abstract
The retinoblastoma tumour suppressor protein (RB) regulates a number of diverse cellular functions including differentiation, angiogenesis, chromatin remodelling, senescence and apoptosis. The best-characterised function of RB is cell cycle regulation, and it has been considered a phosphoprotein regulated by cyclin-dependent kinases. In its hypophosphorylated form, RB binds the transcription factor E2F1, arresting the cell cycle in the G1 phase. Here, we show that MDM2 controls the cell cycle through synthesis and degradation of RB protein in a cell cycle condition-dependent fashion. MDM2 induces G1 cell cycle arrest by enhancing the translation of the RB mRNA under genotoxic stress. Translation requires direct interaction between the RB mRNA and the MDM2 protein that accompanies the RB mRNA to the polysomes. However, MDM2 ubiquitinates and degrades RB protein at the G2/M phase under genotoxic stress. The ATM phosphomimetic mutant MDM2(S395D) corroborates that the effect on the RB levels is dependent on the DNA damage. These results provide the basis of a dual regulatory mechanism by which MDM2 controls cell cycle progression during DNA damage.
Collapse
Affiliation(s)
- Jesus Hernandez‐Monge
- Catedra CONACyT‐ Laboratorio de Interacciones Biomoleculares y Cancer. Instituto de FísicaUniversidad Autónoma de San Luis PotosíMéxico CityMéxico
| | - Mayra Martínez‐Sánchez
- Laboratorio de Interacciones Biomoleculares y CancerInstituto de FísicaUniversidad Autónoma de San Luis PotosíMéxicoCityMéxico
| | - Adriana Rousset‐Roman
- Laboratorio de Interacciones Biomoleculares y CancerInstituto de FísicaUniversidad Autónoma de San Luis PotosíMéxicoCityMéxico
| | - Ixaura Medina‐Medina
- Laboratorio de Interacciones Biomoleculares y CancerInstituto de FísicaUniversidad Autónoma de San Luis PotosíMéxicoCityMéxico
| | - Vanesa Olivares‐Illana
- Laboratorio de Interacciones Biomoleculares y CancerInstituto de FísicaUniversidad Autónoma de San Luis PotosíMéxicoCityMéxico
| |
Collapse
|
30
|
Karakostis K, López I, Peña-Balderas AM, Fåhareus R, Olivares-Illana V. Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms. Biomolecules 2020; 11:36. [PMID: 33396576 PMCID: PMC7824699 DOI: 10.3390/biom11010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 and Mouse double minute 2 (MDM2) proteins are hubs in extensive networks of interactions with multiple partners and functions. Intrinsically disordered regions help to adopt function-specific structural conformations in response to ligand binding and post-translational modifications. Different techniques have been used to dissect interactions of the p53-MDM2 pathway, in vitro, in vivo, and in situ each having its own advantages and disadvantages. This review uses the p53-MDM2 to show how different techniques can be employed, illustrating how a combination of in vitro and in vivo techniques is highly recommended to study the spatio-temporal location and dynamics of interactions, and to address their regulation mechanisms and functions. By using well-established techniques in combination with more recent advances, it is possible to rapidly decipher complex mechanisms, such as the p53 regulatory pathway, and to demonstrate how protein and nucleotide ligands in combination with post-translational modifications, result in inter-allosteric and intra-allosteric interactions that govern the activity of the protein complexes and their specific roles in oncogenesis. This promotes elegant therapeutic strategies that exploit protein dynamics to target specific interactions.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France; (K.K.); (R.F.)
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay;
| | - Ana M. Peña-Balderas
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí 78290, Mexico;
| | - Robin Fåhareus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France; (K.K.); (R.F.)
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Building 6M, Umeå University, 90185 Umeå, Sweden
- International Center for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí 78290, Mexico;
| |
Collapse
|
31
|
He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, Bonasio R. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol 2020; 28:62-70. [PMID: 33230319 PMCID: PMC7855721 DOI: 10.1038/s41594-020-00526-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The ten-eleven translocation 2 (TET2) protein, which oxidizes 5-methylcytosine in DNA, can also bind RNA; however, the targets and function of TET2-RNA interactions in vivo are not fully understood. Using stringent affinity tags introduced at the Tet2 locus, we purified and sequenced TET2-crosslinked RNAs from mouse embryonic stem cells (mESCs) and found a high enrichment for tRNAs. RNA immunoprecipitation with an antibody against 5-hydroxymethylcytosine (hm5C) recovered tRNAs that overlapped with those bound to TET2 in cells. Mass spectrometry (MS) analyses revealed that TET2 is necessary and sufficient for the deposition of the hm5C modification on tRNA. Tet2 knockout in mESCs affected the levels of several small noncoding RNAs originating from TET2-bound tRNAs that were enriched by hm5C immunoprecipitation. Thus, our results suggest a new function of TET2 in promoting the conversion of 5-methylcytosine to hm5C on tRNA and regulating the processing or stability of different classes of tRNA fragments.
Collapse
Affiliation(s)
- Chongsheng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, P. R. China. .,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Julianna Bozler
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin A Janssen
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Gnanasundram SV, Malbert-Colas L, Chen S, Fusée L, Daskalogianni C, Muller P, Salomao N, Fåhraeus R. MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities. Nucleic Acids Res 2020; 48:6775-6787. [PMID: 32453417 PMCID: PMC7337897 DOI: 10.1093/nar/gkaa431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.
Collapse
Affiliation(s)
| | - Laurence Malbert-Colas
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
| | - Leila Fusée
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Chrysoula Daskalogianni
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Norman Salomao
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
| | | |
Collapse
|
33
|
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam EWF, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer 2020; 19:138. [PMID: 32894144 PMCID: PMC7487905 DOI: 10.1186/s12943-020-01253-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. Methods RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). Results CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. Conclusions Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.
Collapse
Affiliation(s)
- Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yizhu Lyu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Meiwei Chen
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Deyu Zou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuewen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Di Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Shujuan Shao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Quentin Liu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Xiang Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China. .,Present Address:Department of Neurosurgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Bilian Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
34
|
Karakostis K, Vadivel Gnanasundram S, López I, Thermou A, Wang L, Nylander K, Olivares-Illana V, Fåhraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J Mol Cell Biol 2020; 11:187-199. [PMID: 30252118 DOI: 10.1093/jmcb/mjy049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023] Open
Abstract
p53 is an intrinsically disordered protein with a large number of post-translational modifications and interacting partners. The hierarchical order and subcellular location of these events are still poorly understood. The activation of p53 during the DNA damage response (DDR) requires a switch in the activity of the E3 ubiquitin ligase MDM2 from a negative to a positive regulator of p53. This is mediated by the ATM kinase that regulates the binding of MDM2 to the p53 mRNA facilitating an increase in p53 synthesis. Here we show that the binding of MDM2 to the p53 mRNA brings ATM to the p53 polysome where it phosphorylates the nascent p53 at serine 15 and prevents MDM2-mediated degradation of p53. A single synonymous mutation in p53 codon 22 (L22L) prevents the phosphorylation of the nascent p53 protein and the stabilization of p53 following genotoxic stress. The ATM trafficking from the nucleus to the p53 polysome is mediated by MDM2, which requires its interaction with the ribosomal proteins RPL5 and RPL11. These results show how the ATM kinase phosphorylates the p53 protein while it is being synthesized and offer a novel mechanism whereby a single synonymous mutation controls the stability and activity of the encoded protein.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | | | - Ignacio López
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | - Aikaterini Thermou
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Robin Fåhraeus
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France.,Department of Medical Biosciences, Umeå University, Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| |
Collapse
|
35
|
Allosteric changes in HDM2 by the ATM phosphomimetic S395D mutation: implications on HDM2 function. Biochem J 2020; 476:3401-3411. [PMID: 31652301 PMCID: PMC6857739 DOI: 10.1042/bcj20190687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
Abstract
Allosteric changes imposed by post-translational modifications regulate and differentiate the functions of proteins with intrinsic disorder regions. HDM2 is a hub protein with a large interactome and with different cellular functions. It is best known for its regulation of the p53 tumour suppressor. Under normal cellular conditions, HDM2 ubiquitinates and degrades p53 by the 26S proteasome but after DNA damage, HDM2 switches from a negative to a positive regulator of p53 by binding to p53 mRNA to promote translation of the p53 mRNA. This change in activity is governed by the ataxia telangiectasia mutated kinase via phosphorylation on serine 395 and is mimicked by the S395D phosphomimetic mutant. Here we have used different approaches to show that this event is accompanied by a specific change in the HDM2 structure that affects the HDM2 interactome, such as the N-termini HDM2–p53 protein–protein interaction. These data will give a better understanding of how HDM2 switches from a negative to a positive regulator of p53 and gain new insights into the control of the HDM2 structure and its interactome under different cellular conditions and help identify interphases as potential targets for new drug developments.
Collapse
|
36
|
Dobbelstein M, Levine AJ. Mdm2: Open questions. Cancer Sci 2020; 111:2203-2211. [PMID: 32335977 PMCID: PMC7385351 DOI: 10.1111/cas.14433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
The Mdm2 oncoprotein and its association with p53 were discovered 30 years ago, and a cornucopia of activities and regulatory pathways have been associated with it. In this review, we will raise questions about Mdm2 and its cousin Mdm4 that we consider worth pursuing in future research, reaching from molecular structures and intracellular activities all the way to development, evolution, and cancer therapy. We anticipate that such research will not only close a few gaps in our knowledge but could add new dimensions to our current view. This compilation of questions contributes to the preparation for the 10th Mdm2 Workshop in Tokyo.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
37
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
38
|
Webster MR, Fane ME, Alicea GM, Basu S, Kossenkov AV, Marino GE, Douglass SM, Kaur A, Ecker BL, Gnanapradeepan K, Ndoye A, Kugel C, Valiga A, Palmer J, Liu Q, Xu X, Morris J, Yin X, Wu H, Xu W, Zheng C, Karakousis GC, Amaravadi RK, Mitchell TC, Almeida FV, Xiao M, Rebecca VW, Wang YJ, Schuchter LM, Herlyn M, Murphy ME, Weeraratna AT. Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Mol Cell 2019; 77:633-644.e5. [PMID: 31836388 DOI: 10.1016/j.molcel.2019.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.
Collapse
Affiliation(s)
- Marie R Webster
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| | - Mitchell E Fane
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Gretchen M Alicea
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Gloria E Marino
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Stephen M Douglass
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Amanpreet Kaur
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Brett L Ecker
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Surgery, University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Keerthana Gnanapradeepan
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abibatou Ndoye
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Curtis Kugel
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Alexander Valiga
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Jessica Palmer
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Qin Liu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessicamarie Morris
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Filipe V Almeida
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Min Xiao
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Vito W Rebecca
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center at Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ashani T Weeraratna
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Swiatkowska A, Dutkiewicz M, Zydowicz-Machtel P, Szpotkowska J, Janecki DM, Ciesiołka J. Translational Control in p53 Expression: The Role of 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2019; 20:E5382. [PMID: 31671760 PMCID: PMC6862623 DOI: 10.3390/ijms20215382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/05/2023] Open
Abstract
In this review, the latest research concerning the structure and function of the 5'-terminal region of p53 mRNA was discussed. Special attention was focused on defined structural motifs which are present in this region, as well as their conservation and plausible functional role in translation. It is known that the length of the 5'-terminal region and the structural environment of initiation codons can strongly modulate translation initiation. The ability of this region of p53 mRNA to bind protein factors was also described with special emphasis on general principles that govern, such RNA-protein interactions. The structural alterations within the 5'-terminal region of p53 mRNA and proteins that bind to this region have a strong impact on the rate of mRNA scanning and on translation efficiency in in vitro assays, in selected cell lines, and under stress conditions. Thus, the structural features of the 5'-terminal region of p53 mRNA seem to be very important for translation and for translation regulation mechanisms. Finally, we suggested topics that, in our opinion, should be further explored for better understanding of the mechanisms of the p53 gene expression regulation at the translational level.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Paulina Zydowicz-Machtel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Joanna Szpotkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Damian M Janecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
40
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
41
|
Expression and purification of the recombinant full-length retinoblastoma protein and characterisation of its interaction with the oncoprotein HDM2. Protein Expr Purif 2019; 162:62-66. [DOI: 10.1016/j.pep.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
|
42
|
Insights into the Functions of LncRNAs in Drosophila. Int J Mol Sci 2019; 20:ijms20184646. [PMID: 31546813 PMCID: PMC6770079 DOI: 10.3390/ijms20184646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides (nt). LncRNAs have high spatiotemporal specificity, and secondary structures have been preserved throughout evolution. They have been implicated in a range of biological processes and diseases and are emerging as key regulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Comparative analyses of lncRNA functions among multiple organisms have suggested that some of their mechanisms seem to be conserved. Transcriptome studies have found that some Drosophila lncRNAs have highly specific expression patterns in embryos, nerves, and gonads. In vivo studies of lncRNAs have revealed that dysregulated expression of lncRNAs in Drosophila may result in impaired embryo development, impaired neurological and gonadal functions, and poor stress resistance. In this review, we summarize the epigenetic, transcriptional, and post-transcriptional mechanisms of lncRNAs and mainly focus on recent insights into the transcriptome studies and biological functions of lncRNAs in Drosophila.
Collapse
|
43
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
44
|
Inhibition of Caspase-2 Translation by the mRNA Binding Protein HuR: A Novel Path of Therapy Resistance in Colon Carcinoma Cells? Cells 2019; 8:cells8080797. [PMID: 31366165 PMCID: PMC6721497 DOI: 10.3390/cells8080797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.
Collapse
|
45
|
Noh M, Yoo SM, Yang D, Lee SY. Broad-Spectrum Gene Repression Using Scaffold Engineering of Synthetic sRNAs. ACS Synth Biol 2019; 8:1452-1461. [PMID: 31132322 DOI: 10.1021/acssynbio.9b00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene expression regulation in broad-spectrum range is critical for constructing cell factories and genetic circuits to balance and control system-wide fluxes. Synthetic small regulatory RNAs (sRNAs) effectively regulate gene expression at the translational level by modulating an mRNA-binding chance and sRNA abundance; however, it can control target gene expression only within the limit of the intrinsic repression ability of sRNAs. Here, we systematically mutated a SgrS scaffold as a model sRNA by dividing the Hfq-binding module of the sRNA into the three regions: the A/U-rich sequence, the stem, and the hairpin loop, and examined how efficiently the mutants suppressed DsRed2 expression. By doing this, we found that a scaffold with an altered A/U-rich sequence (CUUU) and stem length and that with altered A/U-rich sequence (GCAC) showed a 3-fold stronger and a 3-fold weaker repression than the original scaffold, respectively. For practical application of altered scaffolds, proof-of-concept experiments were performed by constructing a library of 67 synthetic sRNAs with the strongest scaffold, each one targeting a different rationally selected gene, and using this library to enhance cadaverine production in Escherichia coli, yielding in 27% increase (1.67 g/L in flask cultivation, 13.7 g/L in fed-batch cultivation). Synthetic sRNAs with engineered sRNA scaffolds could be useful in modulating gene expression for strain improvement.
Collapse
Affiliation(s)
- Minho Noh
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongsoo Yang
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Ding Z, Zhang Z, Jin X, Chen P, Lv F, Liu D, Shen Y, Li Y, Gu X. Interaction with AEG-1 and MDM2 is associated with glioma development and progression and correlates with poor prognosis. Cell Cycle 2019; 18:143-155. [PMID: 30560724 DOI: 10.1080/15384101.2018.1557489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common central nervous system tumor with poor prognosis. The AEG-1 (Astrocyte Elevated Gene 1) gene displays oncogenic characteristics, including proliferation, metastasis, chemoresistance, invasion, and evasion of apoptosis, and is strongly linked to the occurrence of glioma. Here, we elucidated the potential contribution of AEG-1 in human glioma pathogenesis. In glioma cells, AEG-1 could directly interact with Murine Double Minute-2 (MDM2) protein resulting in MDM2-p53-mediated cell proliferation and apoptosis. MDM2 is being revealed as an oncoprotein, which is involved in many human cancers progression. By immunohistochemical and a multivariate analysis, expressions of AEG-1 and MDM2 were elevated in glioma and high AEG-1 and MDM2 expressions were showed to be correlated with poor prognosis. AEG-1-MDM2 interaction prolonged stabilization of MDM2 where AEG-1 inhibited ubiquitination and subsequent proteasome-mediated degradation of MDM2 protein. Moreover, slicing AEG-1 blocked MDM2 expression and then impacted MDM2-p53 pathway that influenced cell proliferation and apoptosis. These findings uncover a novel AEG-1-MDM2 interplay by which AEG-1 augments glioma progression and reveal a viable potential therapy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Zongmei Ding
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Zilan Zhang
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Xu Jin
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Pin Chen
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Fang Lv
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Dan Liu
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Yating Shen
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Yan Li
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| | - Xuewen Gu
- a Department of Pathology , Clinical Medical College, Yangzhou University , Yangzhou , Jiangsu , PR China
| |
Collapse
|
47
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
48
|
Sun T, Mu D, Cui J. Mathematical model identifies effective P53 accumulation with target gene binding affinity in DNA damage response for cell fate decision. Cell Cycle 2018; 17:2716-2730. [PMID: 30488759 DOI: 10.1080/15384101.2018.1553342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Functional p53 signaling is essential for appropriate responses to diverse stimuli. P53 dynamics employs the information from the stimulus leading to selective gene expression and cell fate decision. However, the decoding mechanism of p53 dynamics under DNA damage challenge remains poorly understood. Here we mathematically modeled the recently dual-phase p53 dynamics under doxorubicin treatment. We found that p53 could perform sequential pulses followed by a high-amplitude terminal pulse at relatively low doxorubicin treatment, whereas p53 became steadily accumulated when damage level was high. The effective p53 integral above a threshold but not the absolute accumulation of p53 precisely discriminated survival and death. Silencing negative regulators in p53 network might promote the occurrence of terminal pulse. Furthermore, lower binding affinity and degradation rate of p53 target genes could favorably discriminate high and low dose doxorubicin treatment. Grouping by temporal profiles suggested that the p53 dynamics rather than the doxorubicin doses could better discriminate cellular outcomes and confer less variation for effective p53 integral reemphasizing the importance of p53 level regulation. Our model has established a theoretical framework that p53 dynamics can work cooperatively with its binding affinity to target genes leading to cell fate choice, providing new clues of optimized clinical design by manipulating p53 dynamics.
Collapse
Affiliation(s)
- Tingzhe Sun
- a School of Life Sciences , Anqing Normal University , Anqing , Anhui , China
| | - Dan Mu
- a School of Life Sciences , Anqing Normal University , Anqing , Anhui , China
| | - Jun Cui
- b MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong , China
| |
Collapse
|
49
|
Mozaffari Namin B, Soltan Dallal MM. Campylobacter Concisus and Its Effect on the Expression of CDX1 and COX2. Asian Pac J Cancer Prev 2018; 19:3211-3216. [PMID: 30486614 PMCID: PMC6318391 DOI: 10.31557/apjcp.2018.19.11.3211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Barrett’s oesophagus (BO) is a pre-malignant condition in which normal squamous epithelium of the lower oesophagus and gastresophageal junction is replaced by columnar cells and progress to oesophageal adenocarcinoma. The increase burden of oesophagus cancer morbidity and mortality worldwide make study of factors involved in the pathogenesis of BO essential. However, most of studies that examine the environmental risk factors associated with increased incidence and prevalence of BO have largely ignored the potential role of bacteria in disease aetiology. Aims: This study examined the role of Campylobacter concisus isolated from Barrett’s and adenocarcinoma patient samples as one of possible environmental factors in the progression of Barrett’s oesophagus to oesophagus adenocarcinoma. Methods: We focused on the effect of C. concisus on the expression caudal type homeobox 1 gene (CDX1) and cyclooxygenase-2 (COX-2) in three BO cell lines using quantitative real-time PCR. In addition, the attachment and invasion characteristics of C. concisus were also tested. Results: Results showed that C. concisus had a strong attachment to the cell lines and induce the expression of CDX1 in Barrett’s cell lines in a time-dependent manner. Conclusion: Findings indicate that C. concisus could be as a new challenge in the progression of BO to adenocarcinoma.
Collapse
Affiliation(s)
- Behrooz Mozaffari Namin
- Department of Microbiology of Pathobiology, School of Public Health, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran
- Microbiology and Gut Biology Group, University of Dundee, Ninewells Hospital Medical School, Dundee, UK.
| | | |
Collapse
|
50
|
Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics 2018; 16:17-31. [PMID: 30457403 DOI: 10.1080/14789450.2019.1551135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.
Collapse
Affiliation(s)
- Bethany Claridge
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - Kenneth Kastaniegaard
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - Allan Stensballe
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - David W Greening
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|