1
|
Pulice JL, Meyerson M. Amplified dosage of the NKX2-1 lineage transcription factor controls its oncogenic role in lung adenocarcinoma. Mol Cell 2025; 85:1311-1329.e16. [PMID: 40139189 DOI: 10.1016/j.molcel.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Amplification-mediated oncogene overexpression is a critical and widespread driver event in cancer, yet our understanding of how amplification and dosage mediate oncogene regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage "super-enhancer" near the NKX2-1 lineage transcription factor. The NKX2-1 super-enhancer is targeted by focal and co-amplification with NKX2-1 and controls NKX2-1 expression and regulation. We find that NKX2-1 directly controls enhancer accessibility to drive a lineage-addicted state in LUAD. We precisely map the effects of NKX2-1 dosage modulation upon both overexpression and knockdown and identify both linear and non-linear regulation by NKX2-1 dosage. We find that NKX2-1 is a widespread dependency in LUAD cell lines and that NKX2-1 confers persistence to EGFR inhibitors. Our data suggest a defining role for dosage in the oncogenic regulation of amplified NKX2-1 and that amplified NKX2-1 lineage addiction defines LUAD tumors.
Collapse
Affiliation(s)
- John L Pulice
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Li J, Li L, Hou C, Tian Z, Zhou Y, Zhang J, Ren X, Wang Z, Huang W, Ding K, Zhou F. Discovery of the first potent ROR1 degrader for the treatment of non-small cell lung cancer. Eur J Med Chem 2025; 286:117325. [PMID: 39889450 DOI: 10.1016/j.ejmech.2025.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
ROR1 has been identified as a pseudokinase, functioning as an allosteric regulator in tumor progression. Aberrant overexpression of ROR1 has been observed in various malignancies, highlighting its potential as therapeutic target for cancer therapy. Modulation of ROR1 by proteolysis targeting chimera degrader instead of traditional inhibitor could offer great efficiency in blocking its kinase-independent regulatory function. Here, we report the first potent ROR1 degraders constructed by connecting the E3 ligand to a ROR1 binder. One representative compound 11d exhibited remarkable efficacy in depleting ROR1 protein with a DC50 value of 40.88 nM and Dmax of 93.7 %. Mechanistic investigations illuminated that compound 11d triggers ROR1 protein degradation in a ubiquitin proteasome system (UPS)-dependent manner. Additionally, compound 11d displayed a significantly enhanced ability to inhibit ROR1 signaling, induce apoptosis, and suppress proliferation in lung cell lines compared to the warhead ROR1 binder. These findings underscore the substantial potential of ROR1 degrader for the treatment of non-small cell lung cancer (NSCLC) cells.
Collapse
Affiliation(s)
- Jinlin Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lin Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhaodi Tian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhang Y, Hu Y, Su D, Fu Y, Chen X, Zhang X, Zheng S, Ma X, Hu S. Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract. Biochem Genet 2025:10.1007/s10528-025-11067-6. [PMID: 40019609 DOI: 10.1007/s10528-025-11067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H2O2)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H2O2-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H2O2-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Dongmei Su
- Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Yanjiang Fu
- Daqing Ophthalmology Hospital, Daqing, 163711, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shunfei Zheng
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xu Ma
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
4
|
Shen SM, Yu DD, Ke LM, Yao LG, Su MZ, Guo YW. Polyoxygenated cembrane-type diterpenes from the Hainan soft coral Lobophytum crassum as a promising source of anticancer agents with ErbB3 and ROR1 inhibitory potential. Acta Pharmacol Sin 2025; 46:196-207. [PMID: 39075227 PMCID: PMC11696519 DOI: 10.1038/s41401-024-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
A detailed chemical investigation of the Hainan soft coral Lobophytum crassum led to the identification of a class of polyoxygenated cembrane-type macrocyclic diterpenes (1-28), including three new flexible cembranoids, lobophycrasins E-G (2-4), and twenty-five known analogues. Their structures were elucidated by combining extensive spectroscopic data analysis, quantum mechanical-nuclear magnetic resonance (QM-NMR) methods, the modified Mosher's method, X-ray diffraction analysis, and comparison with data reported in the literature. Bioassays revealed that sixteen cembranoids inhibited the proliferation of H1975, MDA-MB231, A549, and H1299 cells. Among them, Compounds 10, 17, and 20 exhibited significant antiproliferative activities with IC50 values of 1.92-8.82 μM, which are very similar to that of the positive control doxorubicin. Molecular mechanistic studies showed that the antitumour activity of Compound 10 was closely related to regulation of the ROR1 and ErbB3 signalling pathways. This study may provide insight into the discovery and utilization of marine macrocyclic cembranoids as lead compounds for anticancer drugs.
Collapse
Affiliation(s)
- Shou-Mao Shen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224002, China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Lin-Mao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Li-Gong Yao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Luo F, Liu J, Wang R, Yang H, Zhong T, Su M, Fan Y. Discovery of 3-(2-aminobenzo[d]thiazol-5-yl) benzamide derivatives as potent anticancer agents via ROR1 inhibition. Bioorg Med Chem 2025; 117:118011. [PMID: 39591876 DOI: 10.1016/j.bmc.2024.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the receptor tyrosine kinase family, which was overexpressed in non-small cell lung cancer (NSCLC) and essential for cell proliferation, migration and invasion. Recently, accumulating evidences indicated that ROR1 played a critical role in maintaining the balance between the Src survival pathway and the p38 apoptotic pathway. Hence, ROR1 was considered as an attractive therapeutic target for the development of anticancer drugs. However, only a few small molecule ROR1 inhibitors were reported until now. Herein, a series of 3-(2-aminobenzo[d]thiazol-5-yl) benzamide derivatives were designed and synthesized via bioisosterism and simplification strategy guided by the lead compound 9a. MTT assay showed that compound 7h exhibited the best anti-cancer properties with IC50 values of 18.16, 8.11 and 3.5 μM against A549, PC9 and H1975 cells, respectively. Meanwhile, the selectivity index (SI) of compound 7h for H1975 cells was 22.86 compared to that of the lead compound 9a of 1.83, which is at least 12 fold higher than that of lead compound 9a, suggesting that 7h had a favorable safety profile. In addition, the molecular docking, CETSA and DARTS assays suggested that compound 7h might be a novel small molecule ROR1 inhibitor. More importantly, compound 7h significantly suppressed the migration and invasion of H1975 cells in vitro by blocking Src survival pathway and reactivating the p38 apoptotic pathway, and induced H1975 cell cycle arrest in G1 phase. Collectively, our work suggested that the ROR1 inhibitor 7h might be a novel drug candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Jie Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Rongtao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huiyin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Mingzhi Su
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
6
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Wei R, Liao X, Li J, Mu X, Ming Y, Peng Y. Novel humanized monoclonal antibodies against ROR1 for cancer therapy. Mol Cancer 2024; 23:165. [PMID: 39138527 PMCID: PMC11321157 DOI: 10.1186/s12943-024-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Overexpression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) contributes to cancer cell proliferation, survival and migration, playing crucial roles in tumor development. ROR1 has been proposed as a potential therapeutic target for cancer treatment. This study aimed to develop novel humanized ROR1 monoclonal antibodies and investigate their anti-tumor effects. METHODS ROR1 expression in tumor tissues and cell lines was analyzed by immunohistochemistry and flow cytometry. Antibodies from mouse hybridomas were humanized by the complementarity-determining region (CDR) grafting technique. Surface plasmon resonance spectroscopy, ELISA assay and flow cytometry were employed to characterize humanized antibodies. In vitro cellular assay and in vivo mouse experiment were conducted to comprehensively evaluate anti-tumor activity of these antibodies. RESULTS ROR1 exhibited dramatically higher expression in lung adenocarcinoma, liver cancer and breast cancer, and targeting ROR1 by short-hairpin RNAs significantly inhibited proliferation and migration of cancer cells. Two humanized ROR1 monoclonal antibodies were successfully developed, named h1B8 and h6D4, with high specificity and affinity to ROR1 protein. Moreover, these two antibodies effectively suppressed tumor growth in the lung cancer xenograft mouse model, c-Myc/Alb-cre liver cancer transgenic mouse model and MMTV-PyMT breast cancer mouse model. CONCLUSIONS Two humanized monoclonal antibodies targeting ROR1, h1B8 and h6D4, were successfully developed and exhibited remarkable anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Liao
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
9
|
Xian J, Sinha N, Girgis C, Oh CS, Cring MR, Widhopf GF, Kipps TJ. Variant Transcript of ROR1 ENST00000545203 Does Not Encode ROR1 Protein. Biomedicines 2024; 12:1573. [PMID: 39062146 PMCID: PMC11274362 DOI: 10.3390/biomedicines12071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Drs. John and Ford reported in biomedicines that a variant transcript encoding receptor tyrosine kinase-like orphan receptor 1 (ROR1), namely ENST00000545203 or variant 3 (ROR1V3), was a predominant ROR1 transcript of neoplastic or normal cells in the Bioinformatic database, including GTEx and the 33 datasets from TCGA. Unlike the full-length ROR1 transcript, Drs. John and Ford deduced that ROR1V3 encoded a cytoplasmic ROR1 protein lacking an apparent signal peptide necessary for transport to the cell surface, which they presumed made it unlikely to function as a surface receptor for Wingless/Integrated (Wnt) factors. Moreover, they speculated that studies evaluating ROR1 via immunohistochemistry using any one of several anti-ROR1 mAbs actually may have detected cytoplasmic protein encoded by ROR1V3 and that anti-cancer therapies targeting surface ROR1 thus would be ineffective against "cytoplasmic ROR1-positive" cancers that express predominately ROR1V3. We generated lentivirus vectors driving the expression of full-length ROR1 or the ROR1v3 upstream of an internal ribosome entry site (IRES) of the gene encoding a red fluorescent reporter protein. Although we find that cells that express ROR1 have surface and cytoplasmic ROR1 protein, cells that express ROR1v3 neither have surface nor cytoplasmic ROR1, which is consistent with our finding that ROR1v3 lacks an in-frame initiation codon for ribosomal translation into protein. We conclude that the detection of ROR1 protein in various cancers cannot be ascribed to the expression of ROR1v3.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, CA 92037, USA; (J.X.); (N.S.); (C.G.); (C.S.O.); (M.R.C.); (G.F.W.II)
| |
Collapse
|
10
|
Luo D, Qiu X, Zheng Q, Ming Y, Pu W, Ai M, He J, Peng Y. Discovery of Novel Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1) Inhibitors for Cancer Treatment. J Med Chem 2024; 67:10655-10686. [PMID: 38913699 DOI: 10.1021/acs.jmedchem.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncogenic membrane protein in several malignancies and has been considered an attractive target for the treatment of human cancers. In this study, structure-based virtual screening and structure optimization were conducted to identify novel ROR1 inhibitors. Based on hit compound 2, 45 novel ROR1 inhibitors were designed and synthesized, and the detailed structure-activity relationship was investigated. Representative compound 19h potently binds ROR1 with a KD value of 0.10 μM, exhibiting antitumor activity in lung cancer and breast cancer cell lines (IC50: 0.36-1.37 μM). Additionally, a mechanism investigation demonstrated that compound 19h induces the apoptosis of tumor cells. Importantly, compound 19h significantly suppressed tumor growth in a mouse model without obvious toxicity. Overall, this work identified compound 19h as a new ROR1 inhibitor, providing a novel lead compound for the treatment of lung cancer and breast cancer.
Collapse
Affiliation(s)
- Dongdong Luo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingyang Qiu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wencheng Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ming Ai
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jianhua He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
11
|
Luna HGC, Imasa MS, Juat N, Hernandez KV, Sayo TM, Cristal-Luna G, Asur-Galang SM, Bellengan M, Duga KJ, Buenaobra BB, De Los Santos MI, Medina D, Samo J, Literal VM, Sy-Naval S. NKX2‑1 copy number alterations are associated with oncogenic, immunological and prognostic remodeling in non‑small cell lung cancer. Oncol Lett 2024; 28:303. [PMID: 38774453 PMCID: PMC11106692 DOI: 10.3892/ol.2024.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/05/2023] [Indexed: 05/24/2024] Open
Abstract
NK2 homeobox 1 (NKX2-1) copy number alterations (CNAs) are frequently observed in lung cancer. However, little is known about the complete landscape of focal alterations in NKX2-1 copy number (CN), their clinical significance and their therapeutic implications in non-small cell lung cancer (NSCLC). The correlations between NKX2-1 expression and EGFR driver mutations and programmed death ligand 1 (PD-L1) co-expression were studied using immunohistochemistry and PCR from the tumors of recruited Filipino patients (n=45). Clinical features of NSCLC with NKX2-1 CNAs were resolved at the tumor and clonal levels using the molecular profiles of patients with lung adenocarcinoma and lung squamous cell carcinoma from The Cancer Genome Atlas (n=1,130), and deconvoluted single-cell RNA-seq data from the Bivona project (n=1,654), respectively. Despite a significant and positive correlation between expression and CN (r=0.264; P<0.001), NKX2-1 CNAs exerted a stronger influence on the combined EGFR and PD-L1 status of NSCLC tumors than expression. NKX2-1 CN gain was prognostic of favorable survival (P=0.018) and a better response to targeted therapy. NKX2-1 CN loss predicted a worse survival (P=0.041). Mutational architecture in the Y-chromosome differentiated the two prognostic groups. There were 19,941 synonymous mutations and 1,408 genome-wide CN perturbations associated with NKX2-1 CNAs. Tumors with NKX2-1 CN gain expressed lymphocyte markers more heterogeneously than those with CN loss. Higher expression of tumor-infiltrating lymphocyte gene signatures in CN gain was prognostic of longer disease-free survival (P=0.005). Tumors with NKX2-1 CN gain had higher B-cell (P<0.001) and total T-cell estimates (P=0.003). NKX2-1 CN loss was associated with immunologically colder tumors due to higher M2 macrophage infiltrates (P=0.011) and higher expression of immune checkpoint proteins, CD274 (P=0.025), VTCN1 (P<0.001) and LGALS9 (P=0.002). In conclusion, NKX2-1 CNAs are associated with tumors that exhibit clinically diverse characteristics, and with unique oncogenic, immunological and prognostic signatures.
Collapse
Affiliation(s)
- Herdee Gloriane C. Luna
- Department of Medical Oncology, Lung Center of The Philippines, Quezon City, Metro Manila 1100, Philippines
- Department of Internal Medicine, Section of Medical Oncology, National Kidney and Transplant Institute, Quezon City, Metro Manila 1101, Philippines
| | - Marcelo Severino Imasa
- Department of Medical Oncology, Lung Center of The Philippines, Quezon City, Metro Manila 1100, Philippines
| | - Necy Juat
- Department of Internal Medicine, Section of Medical Oncology, National Kidney and Transplant Institute, Quezon City, Metro Manila 1101, Philippines
| | - Katherine V. Hernandez
- Department of Internal Medicine, Section of Oncology, East Avenue Medical Center, Quezon City, Metro Manila 1100, Philippines
| | - Treah May Sayo
- Department of Pathology and Laboratory Medicine, Lung Center of The Philippines, Quezon City, Metro Manila 1100, Philippines
| | - Gloria Cristal-Luna
- Department of Internal Medicine, Section of Medical Oncology, National Kidney and Transplant Institute, Quezon City, Metro Manila 1101, Philippines
| | - Sheena Marie Asur-Galang
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Mirasol Bellengan
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Kent John Duga
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Bien Brian Buenaobra
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Marvin I. De Los Santos
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
- Globetek Science Foundation Inc., Makati, Metro Manila 1203, Philippines
| | - Daniel Medina
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Jamirah Samo
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Venus Minerva Literal
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig, Metro Manila 1631, Philippines
| | - Sullian Sy-Naval
- Department of Medical Oncology, Lung Center of The Philippines, Quezon City, Metro Manila 1100, Philippines
| |
Collapse
|
12
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Yamauchi N, Otsuka M, Ishikawa T, Kakeji Y, Kikuchi A, Masuda A, Kodama Y, Minami Y, Kamizaki K. Role of Wnt5b-Ror1 signaling in the proliferation of pancreatic ductal adenocarcinoma cells. Genes Cells 2024; 29:503-511. [PMID: 38531660 DOI: 10.1111/gtc.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.
Collapse
Affiliation(s)
- Natsuko Yamauchi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomohiro Ishikawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akira Kikuchi
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
14
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
15
|
Stone JK, von Muhlinen N, Zhang C, Robles AI, Flis AL, Vega-Valle E, Miyanaga A, Matsumoto M, Greathouse KL, Cooks T, Trinchieri G, Harris CC. Acidovorax temperans skews neutrophil maturation and polarizes Th17 cells to promote lung adenocarcinoma development. Oncogenesis 2024; 13:13. [PMID: 38570533 PMCID: PMC10991269 DOI: 10.1038/s41389-024-00513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.
Collapse
Affiliation(s)
- Joshua K Stone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalia von Muhlinen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chenran Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Amy L Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Eleazar Vega-Valle
- Laboratory Animal Science Program, Laboratory of Human Carcinogenesis, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Akihiko Miyanaga
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Masaru Matsumoto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - K Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, 76798, USA
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
17
|
Islam SS, Al-Tweigeri T, Al-Harbi L, Ujjahan S, Al-Mozaini M, Tulbah A, Aboussekhra A. Long noncoding RNA DLEU2 and ROR1 pathway induces epithelial-to-mesenchymal transition and cancer stem cells in breast cancer. Cell Death Discov 2024; 10:61. [PMID: 38296962 PMCID: PMC10830457 DOI: 10.1038/s41420-024-01829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Breast cancer (BC) patient who receives chemotherapy for an extended length of time may experience profound repercussions in terms of metastases and clinical outcomes due to the involvement of the epithelial-to-mesenchymal transition (EMT) mechanism and enriched cancer stem cells (CSCs). BC cells that express high levels of lncRNA deleted in lymphocytic leukemia-2 (lncRNA DLEU2) and type I tyrosine kinase-like orphan receptor ROR1 (ROR1) may play roles in the enhanced ability of the activation EMT and CSC induction. Here we find that lncRNA DLEU2 and ROR1 are specifically upregulated in tumor tissues compared to their normal counterparts in TCGA, PubMed GEO datasets, and samples from archived breast cancer tumor tissues. Following chemotherapy, lncRNA DLEU2 and ROR1 were enhanced in BC tumor cells, coupled with the expression of CSCs, EMT-related genes, and BMI1. Mechanistically, ROR1 and lncRNA DLEU2 overexpression led to enhanced tumor cell proliferation, inhibition of apoptosis, cell-cycle dysregulation, chemoresistance, as well as BC cell's abilities to invade, migrate, develop spheroids. These findings imply that the role of lncRNA DLEU2 and ROR1 in BC therapeutic failure is largely attributed to EMT, which is intricately linked to enriched CSCs. In conclusion, our findings indicate that a lncRNA DLEU2 and ROR1-based regulatory loop governs EMT and CSC self-renewal, implying that targeting this regulatory pathway may improve patients' responses to chemotherapy and survival.
Collapse
Affiliation(s)
- Syed S Islam
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
- School of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Taher Al-Tweigeri
- Breast Cancer Unit, Oncology Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Layla Al-Harbi
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Shafat Ujjahan
- Department of Medical Oncology and Radiotherapy, Park View Hospital, Chattagram, Bangladesh
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Pulice JL, Meyerson M. Dosage amplification dictates oncogenic regulation by the NKX2-1 lineage factor in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563996. [PMID: 37994369 PMCID: PMC10664179 DOI: 10.1101/2023.10.26.563996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Amplified oncogene expression is a critical and widespread driver event in cancer, yet our understanding of how amplification-mediated elevated dosage mediates oncogenic regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage super-enhancer near the NKX2-1 lineage transcription factor. The NKX2-1 super-enhancer is targeted by focal and co-amplification with NKX2-1, and activation or repression controls NKX2-1 expression. We find that NKX2-1 is a widespread dependency in LUAD cell lines, where NKX2-1 pioneers enhancer accessibility to drive a lineage addicted state in LUAD, and NKX2-1 confers persistence to EGFR inhibitors. Notably, we find that oncogenic NKX2-1 regulation requires expression above a minimum dosage threshold-NKX2-1 dosage below this threshold is insufficient for cell viability, enhancer remodeling, and TKI persistence. Our data suggest that copy-number amplification can be a gain-of-function alteration, wherein amplification elevates oncogene expression above a critical dosage required for oncogenic regulation and cancer cell survival.
Collapse
Affiliation(s)
- John L. Pulice
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Lead contact
| |
Collapse
|
19
|
Nishita M, Kamizaki K, Hoshi K, Aruga K, Nishikaku I, Shibuya H, Matsumoto K, Minami Y. Rho family small GTPase Rif regulates Wnt5a-Ror1-Dvl2 signaling and promotes lung adenocarcinoma progression. J Biol Chem 2023; 299:105248. [PMID: 37703992 PMCID: PMC10570955 DOI: 10.1016/j.jbc.2023.105248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kana Aruga
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Ikumi Nishikaku
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
20
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
21
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Lee KJ, Kim NH, Kim HS, Kim Y, Lee JJ, Kim JH, Cho HY, Jeong SY, Park ST. The Role of ROR1 in Chemoresistance and EMT in Endometrial Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050994. [PMID: 37241228 DOI: 10.3390/medicina59050994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Receptor tyrosine kinase-like orphan receptor type 1 (ROR1) plays a critical role in embryogenesis and is overexpressed in many malignant cells. These characteristics allow ROR1 to be a potential new target for cancer treatment. The aim of this study was to investigate the role of ROR1 through in vitro experiments in endometrial cancer cell lines. Materials and Methods: ROR1 expression was identified in endometrial cancer cell lines using Western blot and RT-qPCR. The effects of ROR1 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) markers were analyzed in two endometrial cancer cell lines (HEC-1 and SNU-539) using either ROR1 silencing or overexpression. Additionally, chemoresistance was examined by identifying MDR1 expression and IC50 level of paclitaxel. Results: The ROR1 protein and mRNA were highly expressed in SNU-539 and HEC-1 cells. High ROR1 expression resulted in a significant increase in cell proliferation, migration, and invasion. It also resulted in a change of EMT markers expression, a decrease in E-cadherin expression, and an increase in Snail expression. Moreover, cells with ROR1 overexpression had a higher IC50 of paclitaxel and significantly increased MDR1 expression. Conclusions: These in vitro experiments showed that ROR1 is responsible for EMT and chemoresistance in endometrial cancer cell lines. Targeting ROR1 can inhibit cancer metastasis and may be a potential treatment method for patients with endometrial cancer who exhibit chemoresistance.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nam-Hyeok Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye-Yon Cho
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea
| | - Soo Young Jeong
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| |
Collapse
|
23
|
Wang R, Kang N, Zhang W, Chen B, Xu S, Wu L. The developmental toxicity of PM2.5 on the early stages of fetal lung with human lung bud tip progenitor organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121764. [PMID: 37142209 DOI: 10.1016/j.envpol.2023.121764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Exposure to air pollution has been proven to be associated with impaired fetal lung development. However, due to the lack of reliable human source models, it is still challenging to deeply understand the human fetal lung development under PM2.5 exposure. Here, we utilized human embryonic stem cell (hESC) line H9 to generate lung bud tip progenitor organoids (LPOs), a process that mimics early stages of fetal lung development including definitive endoderm (DE) formation, anterior foregut endoderm (AFE) differentiation and lung progenitor cell specification, to evaluate potential pulmonary developmental toxicity of PM2.5. We demonstrated that PM2.5 exposure the entire LPOs induction from hESCs significantly affected cellular proliferation of LPOs, and altered the expression of lung progenitor cell markers NKX2.1, SOX2 and SOX9, which are canonically defined subsequently proximal-distal airways specification. To explore the dynamic influences of PM2.5 exposure at different stages of LPOs specification, we also found that PM2.5 exposure significantly affected the expression of several transcriptional factors that are important for the differentiation of DE and AFE. Mechanistically, we suggested PM2.5-induced developmental toxicity to LPOs was partially linked with the Wnt/β-catenin signaling pathway. Therefore, our findings further emphasize the substantial health risks in the development of respiratory system associated with prenatal exposure to PM2.5.
Collapse
Affiliation(s)
- Run Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ningning Kang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|
24
|
Yamazaki M, Hino S, Usuki S, Miyazaki Y, Oda T, Nakao M, Ito T, Yamagata K. YAP/BRD4-controlled ROR1 promotes tumor-initiating cells and hyperproliferation in pancreatic cancer. EMBO J 2023:e112614. [PMID: 37096681 DOI: 10.15252/embj.2022112614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Ghaderi A, Okhovat MA, Lehto J, De Petris L, Manouchehri Doulabi E, Kokhaei P, Zhong W, Rassidakis GZ, Drakos E, Moshfegh A, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat-Farsangi M. A Small Molecule Targeting the Intracellular Tyrosine Kinase Domain of ROR1 (KAN0441571C) Induced Significant Apoptosis of Non-Small Cell Lung Cancer (NSCLC) Cells. Pharmaceutics 2023; 15:pharmaceutics15041148. [PMID: 37111634 PMCID: PMC10145660 DOI: 10.3390/pharmaceutics15041148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
The ROR1 receptor tyrosine kinase is expressed in embryonic tissues but is absent in normal adult tissues. ROR1 is of importance in oncogenesis and is overexpressed in several cancers, such as NSCLC. In this study, we evaluated ROR1 expression in NSCLC patients (N = 287) and the cytotoxic effects of a small molecule ROR1 inhibitor (KAN0441571C) in NSCLC cell lines. ROR1 expression in tumor cells was more frequent in non-squamous (87%) than in squamous (57%) carcinomas patients, while 21% of neuroendocrine tumors expressed ROR1 (p = 0.0001). A significantly higher proportion of p53 negative patients in the ROR1+ group than in the p53 positive non-squamous NSCLC patients (p = 0.03) was noted. KAN0441571C dephosphorylated ROR1 and induced apoptosis (Annexin V/PI) in a time- and dose-dependent manner in five ROR1+ NSCLC cell lines and was superior compared to erlotinib (EGFR inhibitor). Apoptosis was confirmed by the downregulation of MCL-1 and BCL-2, as well as PARP and caspase 3 cleavage. The non-canonical Wnt pathway was involved. The combination of KAN0441571C and erlotinib showed a synergistic apoptotic effect. KAN0441571C also inhibited proliferative (cell cycle analyses, colony formation assay) and migratory (scratch wound healing assay) functions. Targeting NSCLC cells by a combination of ROR1 and EGFR inhibitors may represent a novel promising approach for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad-Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jemina Lehto
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, 171 76 Solna, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Immunology, Arak University of Medical Sciences, Arak 3848170001, Iran
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Pathology, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 64 Solna, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
26
|
Quezada MJ, Lopez-Bergami P. The signaling pathways activated by ROR1 in cancer. Cell Signal 2023; 104:110588. [PMID: 36621728 DOI: 10.1016/j.cellsig.2023.110588] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.
Collapse
Affiliation(s)
- María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
27
|
Fan Y, Zhang F, Xiong L, Su M, Luo F, Li M, Li Q, Zhong T, Yuan M, Xu Y, Mu S, Yang H. Design, synthesis, and biological evaluation of 6-(imidazo[1,2-a] pyridin-6-yl) quinazolin-4(3H)-one derivatives as potent anticancer agents by dual targeting Aurora kinase and ROR1. Bioorg Chem 2023; 135:106484. [PMID: 36963371 DOI: 10.1016/j.bioorg.2023.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
ROR1 and Aurora kinase were overexpressed in various cancers and essential for cell proliferation, survive and metastasis. Pharmaceutical inhibition of ROR1 and Aurora kinase abrogated the activation of downstream signaling and induced cancer cell apoptosis. Hence, ROR1 and Aurora kinase considered as attractive therapeutic targets for the development of anticancer drugs. In the present work, three series of novel 6-(imidazo[1,2-a] pyridin-6-yl)-quinazolin-4(3H)-one derivatives were designed and synthesized via bioisosterism and scaffold-hopping strategies guided by FLF-13, an Aurora kinase inhibitor we discovered earlier. Most of compounds in series 2 and series 3 showed submicromolar to nanomolar inhibitory activity against multiple cancer cell lines. More importantly, compounds 12d and 12f in series 3 showed nanomolar inhibitory activity against all test cancer cells. The most promising compound 12d exhibited potent inhibitory activity against Aurora A and Aurora B with IC50 values of 84.41 nM and 14.09 nM, respectively. Accordingly, compounds 12d induced G2/M phase cell cycle arrest at 24 h and polyploidy at 48 h. It's worth noting that 12d also displayed inhibitory activity against ROR1 and induce cell apoptosis. Furthermore, 12d could significantly inhibit the tumor growth in SH-SY5Y xenograft model with tumor growth inhibitory rate (IR) up to 46.31 % at 10 mg/kg and 52.66 % at 20 mg/kg. Overall, our data suggested that 12d might serve as a promising candidate for the development of therapeutic agents for cancers with aberrant expression of ROR1 and Aurora kinases by simultaneously targeting ROR1 and Aurora kinase.
Collapse
Affiliation(s)
- Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Feng Zhang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mingzhi Su
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Meitao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuzhen Mu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Huarong Yang
- Chongqing Liangping District People's Hospital, Chongqing 405200, China.
| |
Collapse
|
28
|
Tanaka Y, Minami Y, Endo M. Ror1 promotes PPARα-mediated fatty acid metabolism in astrocytes. Genes Cells 2023; 28:307-318. [PMID: 36811220 DOI: 10.1111/gtc.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Ror1 signaling regulates cell polarity, migration, proliferation, and differentiation during developmental morphogenesis, and plays an important role in regulating neurogenesis in the embryonic neocortices. However, the role of Ror1 signaling in the brains after birth remains largely unknown. Here, we found that expression levels of Ror1 in the mouse neocortices increase during the postnatal period, when astrocytes mature and start expressing GFAP. Indeed, Ror1 is highly expressed in cultured postmitotic mature astrocytes. RNA-Seq analysis revealed that Ror1 expressed in cultured astrocytes mediates upregulated expression of genes related to fatty acid (FA) metabolism, including the gene encoding carnitine palmitoyl-transferase 1a (Cpt1a), the rate-limiting enzyme of mitochondrial fatty acid β-oxidation (FAO). We also found that Ror1 promotes the degradation of lipid droplets (LDs) accumulated in the cytoplasm of cultured astrocytes after oleic acid loading, and that suppressed expression of Ror1 decreases the amount of FAs localized at mitochondria, intracellular ATP levels, and expression levels of peroxisome proliferator-activated receptor α (PPARα) target genes, including Cpt1a. Collectively, these findings indicate that Ror1 signaling promotes PPARα-mediated transcription of FA metabolism-related genes, thereby facilitating the availability of FAs derived from LDs for mitochondrial FAO in the mature astrocytes.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
29
|
Gloriane C Luna H, Severino Imasa M, Juat N, Hernandez KV, May Sayo T, Cristal-Luna G, Marie Asur-Galang S, Bellengan M, John Duga K, Brian Buenaobra B, De Los Santos MI, Medina D, Samo J, Minerva Literal V, Andrew Bascos N, Sy-Naval S. Expression landscapes in non-small cell lung cancer shaped by the thyroid transcription factor 1. Lung Cancer 2023; 176:121-131. [PMID: 36634573 DOI: 10.1016/j.lungcan.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
TTF-1-expressing non-small cell lung cancer (NSCLC) is one of the most prevalent lung cancer types worldwide. However, theparadoxical activity of TTF-1 in both lung carcinogenesis and tumor suppression is believed to be context-dependentwhich calls for a deeper understanding about the pathological expression of TTF-1. In addition, the expression circuitry of TTF-1-target genes in NSCLC has not been well examined which necessitates to revisit the involvement of TTF-1- in a multitude of oncologic pathways. We used RNA-seq and clinical data of patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), including ChIP-seq data from different NSCLC cell lines, and mapped the proteome of NSCLC tumor. Our analysis showed significant variability in TTF-1 expression among NSCLC,and further clarified that this variability is orchestrated at the transcriptional level. We also found that high TTF-1 expression could negatively influence the survival outcomes of stage 1 LUAD which may be attributed to growth factor receptor-driven activation of mitogenic and angiogenic pathways. Mechanistically, TTF-1 may also control the genes associated with pathways involved in acquired TKI drug resistance or response to immune checkpoint inhibitors. Lastly, proteome-based biomarker discovery in stage 1 LUAD showed that TTF-1 positivity is potentially associated with the upregulation of several oncogenes which includes interferon proteins, MUC1, STAT3, and EIF2AK2. Collectively, this study highlights the potential involvement of TTF-1 in cell proliferation, immune evasion, and angiogenesis in early-stage NSCLC.
Collapse
Affiliation(s)
- Herdee Gloriane C Luna
- Department of Internal Medicine, Lung Center of the Philippines, Quezon Ave, Diliman, Quezon City, Metro Manila 1100, Philippines; Department of Internal Medicine, National Kidney and Transplant Institute, East Avenue, Diliman, Quezon City 1101, Philippines.
| | - Marcelo Severino Imasa
- Department of Internal Medicine, Lung Center of the Philippines, Quezon Ave, Diliman, Quezon City, Metro Manila 1100, Philippines
| | - Necy Juat
- Department of Internal Medicine, National Kidney and Transplant Institute, East Avenue, Diliman, Quezon City 1101, Philippines
| | - Katherine V Hernandez
- Department of Internal Medicine, East Avenue Medical Center, East Ave, Diliman, Quezon City, Metro Manila 1100, Philippines
| | - Treah May Sayo
- Department of Internal Pathology, Lung Center of the Philippines, Quezon Ave, Diliman, Quezon City, Metro Manila 1100, Philippines
| | - Gloria Cristal-Luna
- Department of Internal Medicine, National Kidney and Transplant Institute, East Avenue, Diliman, Quezon City 1101, Philippines
| | - Sheena Marie Asur-Galang
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Mirasol Bellengan
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Kent John Duga
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Bien Brian Buenaobra
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Marvin I De Los Santos
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Daniel Medina
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Jamirah Samo
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Venus Minerva Literal
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology, Philippine Council for Health Research and Development, Philippines
| | - Neil Andrew Bascos
- National Institute of Molecular Biology and Biotechnology, University of the Philippines - Diliman, Diliman, Quezon City, Metro Manila, Philippines; Protein, Proteomics and Metabolomics Facility, Philippine Genome Center, University of the Philippines System, Philippines
| | - Sullian Sy-Naval
- Department of Internal Medicine, Lung Center of the Philippines, Quezon Ave, Diliman, Quezon City, Metro Manila 1100, Philippines
| |
Collapse
|
30
|
Sanada M, Yamazaki M, Yamada T, Fujino K, Kudoh S, Tenjin Y, Saito H, Kudo N, Sato Y, Matsuo A, Suzuki M, Ito T. Heterogeneous expression and role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in small cell lung cancer. Hum Cell 2023; 36:409-420. [PMID: 36463543 DOI: 10.1007/s13577-022-00830-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022]
Abstract
The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.
Collapse
Affiliation(s)
- Mune Sanada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tatsuya Yamada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Tenjin
- Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan. .,Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, 325 Izumi, Kita-Ku, Kumamoto, Kumamoto, 861-5598, Japan.
| |
Collapse
|
31
|
Ishikawa T, Ogura Y, Tanaka K, Nagashima H, Sasayama T, Endo M, Minami Y. Ror1 is expressed inducibly by Notch and hypoxia signaling and regulates stem cell-like property of glioblastoma cells. Cancer Sci 2022; 114:561-573. [PMID: 36314076 PMCID: PMC9899608 DOI: 10.1111/cas.15630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ror1 plays a crucial role in cancer progression by regulating cell proliferation and migration. Ror1 is expressed abundantly in various types of cancer cells and cancer stem-like cells. However, the molecular mechanisms regulating expression of Ror1 in these cells remain largely unknown. Ror1 and its putative ligand Wnt5a are expressed highly in malignant gliomas, especially in glioblastomas, and the extents of Ror1 expression are correlated positively with poorer prognosis in patients with gliomas. We show that Ror1 expression can be upregulated in glioblastoma cells under spheroid culture, but not adherent culture conditions. Notch and hypoxia signaling pathways have been shown to be activated in spheroid-forming glioblastoma stem-like cells (GSCs), and Ror1 expression in glioblastoma cells is indeed suppressed by inhibiting either Notch or hypoxia signaling. Meanwhile, either forced expression of the Notch intracellular domain (NICD) in or hypoxic culture of glioblastoma cells result in enhanced expression of Ror1 in the cells. Consistently, we show that both NICD and hypoxia-inducible factor 1 alpha bind to upstream regions within the Ror1 gene more efficiently in GSCs under spheroid culture conditions. Furthermore, we provide evidence indicating that binding of Wnt5a to Ror1, upregulated by Notch and hypoxia signaling pathways in GSCs, might promote their spheroid-forming ability. Collectively, these findings indicate for the first time that Notch and hypoxia signaling pathways can elicit a Wnt5a-Ror1 axis through transcriptional activation of Ror1 in glioblastoma cells, thereby promoting their stem cell-like property.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Yasuka Ogura
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Takashi Sasayama
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| |
Collapse
|
32
|
Ghaderi A, Zhong W, Okhovat MA, Aschan J, Svensson A, Sander B, Schultz J, Olin T, Österborg A, Hojjat-Farsangi M, Mellstedt H. A ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells. Pharmaceutics 2022; 14:pharmaceutics14102238. [PMID: 36297673 PMCID: PMC9607197 DOI: 10.3390/pharmaceutics14102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small molecule inhibitor of ROR1 (KAN0441571C) as well as venetoclax (BCL-2 inhibitor), bendamustine, idelalisib (PI3Kδ inhibitor), everolimus (mTOR inhibitor), and ibrutinib (BTK inhibitor) alone or in combination in human MCL primary cells and cell lines. ROR1 expression was evaluated by flow cytometry and Western blot (WB). Cytotoxicity was analyzed by MTT and apoptosis by Annexin V/PI staining as well as signaling and apoptotic proteins (WB). ROR1 was expressed both in patient-derived MCL cells and human MCL cell lines. KAN0441571C alone induced significant time- and dose-dependent apoptosis of MCL cells. Apoptosis was accompanied by decreased expression of MCL-1 and BCL-2 and cleavage of PARP and caspase 3. ROR1 was dephosphorylated as well as ROR1-associated signaling pathway molecules, including the non-canonical WNT signaling pathway (PI3Kδ/AKT/mTOR). The combination of KAN0441571C and ibrutinib, venetoclax, idelalisib, everolimus, or bendamustine had a synergistic apoptotic effect and significantly prevented phosphorylation of ROR1-associated signaling molecules as compared to KAN0441571C alone. Our results suggest that targeting ROR1 by a small molecule inhibitor, KAN0441571C, should be further evaluated particularly in combination with other targeting drugs as a new therapeutic approach for MCL.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Johanna Aschan
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Ann Svensson
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Correspondence: ; Tel.: +46-735-234-706
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
33
|
John M, Ford CE. Pan-Tissue and -Cancer Analysis of ROR1 and ROR2 Transcript Variants Identify Novel Functional Significance for an Alternative Splice Variant of ROR1. Biomedicines 2022; 10:biomedicines10102559. [PMID: 36289823 PMCID: PMC9599429 DOI: 10.3390/biomedicines10102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
ROR1/2 are putative druggable targets increasing in significance in translational oncology. Expression of ROR1/2 mRNA and transcript variants has not been systematically examined thus far. ROR1/2 transcript variant sequences, signal peptides for cell surface localisation, and mRNA and transcript variant expression were examined in 34 transcriptomic datasets including 33 cancer types and 54 non-diseased human tissues. ROR1/2 have four and eight transcript variants, respectively. ROR1/2 mRNA and transcript variant expression was detected in various non-diseased tissues. Our analysis identifies predominant expression of ROR1 transcript variant ENST00000545203, which lacks a signal peptide for cell surface localisation, rather than the predicted principal variant ENST00000371079. ENST00000375708 is the predominantly expressed transcript variant of ROR2. ROR1/2 expression in healthy human tissues should be carefully considered for safety assessment of targeted therapy. Studies exploring the function and significance of the predominantly expressed ROR1 transcript variant ENST00000545203 are warranted.
Collapse
Affiliation(s)
- Miya John
- Correspondence: (M.J.); (C.E.F.); Tel.: +61-2-9385-1451 (C.E.F.)
| | - Caroline E. Ford
- Correspondence: (M.J.); (C.E.F.); Tel.: +61-2-9385-1451 (C.E.F.)
| |
Collapse
|
34
|
Tansathitaya V, Sarasin W, Phakham T, Sawaswong V, Chanchaem P, Payungporn S. Regulation of mi-RNAs Target Cancer Genes Between Exercise and Non-exercise in Rat Rheumatoid Arthritis Induction: Pilot Study. Epigenet Insights 2022; 15:25168657221110485. [PMID: 35800470 PMCID: PMC9253985 DOI: 10.1177/25168657221110485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Rheumatoid arthritis is associated with various cancers. Many studies have
investigated physical exercise interventions as health improvements to
ameliorate the risk of cancer during rheumatoid arthritis diagnosis.
Recently, microRNAs were used as biomarkers for health assessment and cancer
prediction in rheumatoid arthritis patients. Methods: The effects of exercise interventions on serum microRNAs were investigated in
pristane-induced arthritis (PIA) rat models. Twelve Sprague-Dawley male rats
were divided into 4 groups including non-exercise without PIA (N-EX),
non-exercise with PIA (N-EX + PIA), exercise without PIA (EX) and exercise
with PIA (EX + PIA). Blood samples were collected at the end of the study
period to analyze miRNA biomarkers and target cancer gene predictions. Results: Four significant Rattus norvegicus (rno-microRNAs) may purpose as tumor
suppressors were identified as potential target cancer gene candidate
expressions within the 4 comparative interventional exercise groups. One
rno-microRNA and target cancer gene candidate was up-regulated and 3
rno-microRNAs and their target cancer genes were down-regulated. Conclusions: Exercise interventions affected rno-miRNAs regulated target cancer gene
candidates ITPR3, SOCS6, ITGA6, and NKX2-1 as biomarkers for cancer
prognosis in rheumatoid arthritis diagnosis.
Collapse
Affiliation(s)
- Vimolmas Tansathitaya
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Witchana Sarasin
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
35
|
Nakahama K, Kaneda H, Osawa M, Izumi M, Yoshimoto N, Sugimoto A, Nagamine H, Ogawa K, Matsumoto Y, Sawa K, Tani Y, Mitsuoka S, Watanabe T, Asai K, Kawaguchi T. Association of thyroid transcription factor-1 with the efficacy of immune-checkpoint inhibitors in patients with advanced lung adenocarcinoma. Thorac Cancer 2022; 13:2309-2317. [PMID: 35808895 PMCID: PMC9376174 DOI: 10.1111/1759-7714.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background We aimed to identify the relationship between thyroid transcription factor‐1 (TTF‐1) expression of lung adenocarcinoma and the efficacy of immune‐checkpoint inhibitor (ICI) therapy. Methods This retrospective multicenter study comprised patients with advanced lung adenocarcinoma treated with ICI monotherapy. We collected clinical medical records including data on TTF‐1 expression and analyzed the relationship between TTF‐1 expression and programmed death‐ligand 1 tumor proportion score (PD‐L1 TPS), objective response rate (ORR), progression‐free survival (PFS), and overall survival (OS). Results In total, 108 patients with lung adenocarcinoma were analyzed. The rate of TPS ≥1% and ≥50% in patients with positive TTF‐1 expression was significantly higher than that in patients with negative TTF‐1 expression (88% vs. 60%, p < 0.001; 65% vs. 24%, p < 0.001). The ORR was significantly higher in TTF‐1 positive patients than in TTF‐1‐negative patients (38% vs. 8%, p = 0.003). Among patients with TPS ≥50% and 1%–49%, the ORR in TTF‐1 positive and negative patients was 48% (26/54) versus 17% (1/6) (p = 0.21), and 32% (6/19) versus 11% (1/9) (p = 0.37), respectively. The ORR for patients with TPS <1% was 0% in both the TTF‐1 negative and positive cases. The median PFS and OS was significantly longer in TTF‐1‐positive patients than in TTF‐1‐negative patients (5.4 vs. 1.6 months, p < 0.001; 18.2 vs. 8.0 months, p = 0.041). Multivariate analysis revealed that TTF‐1‐negative status was an independent unfavorable prognostic factor for PFS. Conclusion Patients with TTF‐1‐positive status receiving ICI monotherapy showed better outcomes than those with TTF‐1‐negative lung adenocarcinoma.
Collapse
Affiliation(s)
- Kenji Nakahama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiko Osawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Motohiro Izumi
- Department of Pulmonary Medicine, Bell land General Hospital, Sakai, Japan
| | - Naoki Yoshimoto
- Department of Pulmonary Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
36
|
Integrative pharmacogenomics revealed three subtypes with different immune landscapes and specific therapeutic responses in lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20:3449-3460. [PMID: 35832634 PMCID: PMC9271977 DOI: 10.1016/j.csbj.2022.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pharmacogenomics is crucial for individualized drug therapy and plays an increasingly vital role in precision medicine decision-making. However, pharmacogenomics-based molecular subtypes and their potential clinical significance remain primarily unexplored in lung adenocarcinoma (LUAD). Methods A total of 2065 samples were recruited from eight independent cohorts. Pharmacogenomics data were generated from the profiling of relative inhibition simultaneously in mixtures (PRISM) and the genomics of drug sensitivity in cancer (GDSC) databases. Multiple bioinformatics approaches were performed to identify pharmacogenomics-based subtypes and find subtype-specific properties. Results Three reproducible molecular subtypes were found, which were independent prognostic factors and highly associated with stage, survival status, and accepted molecular subtypes. Pharmacogenomics-based subtypes had distinct molecular characteristics: S-Ⅰ was inflammatory, proliferative, and immune-evasion; S-Ⅱ was proliferative and genetics-driven; S-III was metabolic and methylation-driven. Finally, our study provided subtype-guided personalized treatment strategies: Immune checkpoint blockers (ICBs), doxorubicin, tipifarnib, AZ628, and AZD6244 were for S-Ⅰ; Cisplatin, camptothecin, roscovitine, and A.443654 were for S-Ⅱ; Docetaxel, paclitaxel, vinorelbine, and BIBW2992 were for S-III. Conclusion We provided a novel molecular classification strategy and revealed three pharmacogenomics-based subtypes for LUAD patients, which uncovered potential subtype-related and patient-specific therapeutic strategies.
Collapse
|
37
|
Raivola J, Dini A, Salokas K, Karvonen H, Niininen W, Piki E, Varjosalo M, Ungureanu D. New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cell Mol Life Sci 2022; 79:276. [PMID: 35504983 PMCID: PMC9064840 DOI: 10.1007/s00018-022-04301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.
Collapse
Affiliation(s)
- Juuli Raivola
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Alice Dini
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Emilia Piki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Daniela Ungureanu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
38
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
39
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
40
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021; 12:782775. [PMID: 34790207 PMCID: PMC8591168 DOI: 10.3389/fimmu.2021.782775] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical response in hematological malignancies, including B-cell leukemia, lymphoma, and multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is actively evaluated. Currently, multiple basic research projects and clinical trials are being conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in CAR-T cell therapy have been made in hematological tumors, the technology still entails considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity, paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment, and low infiltration level of immune cells into solid tumor niches, which are even more complicated than their application in hematological tumors. Thus, progress in the scientific understanding of tumor immunology and improvements in the manufacture of cell products are advancing the clinical translation of these important cellular immunotherapies. This review focused on the latest research progress of CAR-T cell therapy in lung cancer treatment and for the first time, demonstrated the underlying challenges and future engineering strategies for the clinical application of CAR-T cell therapy against lung cancer.
Collapse
Affiliation(s)
- Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
41
|
Daikuzono H, Yamazaki M, Sato Y, Takahashi T, Yamagata K. Development of a DELFIA method to detect oncofetal antigen ROR1-positive exosomes. Biochem Biophys Res Commun 2021; 578:170-176. [PMID: 34597914 DOI: 10.1016/j.bbrc.2021.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is highly expressed in a wide variety of hematological and solid cancers, but is low or absent in adult tissues. Here, we show that ROR1 is released with exosomes from ROR1-positive cancer cells. We also developed a simple dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) to detect cancer-derived ROR1-positive exosomes, which are captured by two anti-ROR1 antibodies and detected by the fluorescence of free chelating europium. This new DELFIA method can detect cancer-derived ROR1-positive exosomes in the cell supernatant and serum with a wide range and rapidly compared with the conventional Western blot assay. This method may be useful as a companion diagnostics for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hina Daikuzono
- Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masaya Yamazaki
- Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan; Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | | | - Kazuya Yamagata
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
42
|
Chung H, Jung H, Noh JY. Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Int J Mol Sci 2021; 22:ijms222212126. [PMID: 34830003 PMCID: PMC8621681 DOI: 10.3390/ijms222212126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient’s autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.
Collapse
Affiliation(s)
- Hyunmin Chung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.J.); (J.-Y.N.)
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (H.J.); (J.-Y.N.)
| |
Collapse
|
43
|
Thyroid Transcription Factor-1: Structure, Expression, Function and Its Relationship with Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9957209. [PMID: 34631891 PMCID: PMC8494563 DOI: 10.1155/2021/9957209] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
Thyroid transcription factor-1 (TTF-1/NKx2.1) is a member of the NKx2 tissue-specific transcription factor family, which is expressed in thyroid follicle, parathyroid gland, alveolar epithelium, and diencephalon which originated from ectoderm, and participates in the differentiation, development, and functional maintenance of the above organs. Recent studies have shown that the abnormal expression of TTF-1 is closely related to the occurrence of a variety of human diseases and can be used as a potential new target for the diagnosis and treatment of related diseases. In this article, in order to strengthen the systematic understanding of TTF-1 and promote the progress of related research, we reviewed the structure, expression regulation, biological functions of TTF-1, and its role in the occurrence and development of human-related clinical diseases. Meanwhile, we prospect the future research direction of TTF-1, which might ultimately contribute to the understanding of the pathogenesis of related clinical diseases and the development of new prevention and treatment strategies.
Collapse
|
44
|
Qin AC, Qian Y, Ma YY, Jiang Y, Qian WF. Long Non-coding RNA RP11-395G23.3 Acts as a Competing Endogenous RNA of miR-124-3p to Regulate ROR1 in Anaplastic Thyroid Carcinoma. Front Genet 2021; 12:673242. [PMID: 34421987 PMCID: PMC8375390 DOI: 10.3389/fgene.2021.673242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies with poor prognosis. However, the underlying mechanisms of ATC remain to be elucidated. Recently, increasing studies have focused on competitive endogenous RNA (ceRNA) to discover valuable biomarkers for the diagnosis of ATC. The present study identified 705 differentially expressed mRNAs and 47 differentially expressed lncRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted. Additionally, an lncRNA/miRNA/mRNA network was constructed which included 1103 regulatory relations. The upregulation of RP11-395G23.3 in ATC cells was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In the loss of function assays, results suggested silencing of RP11-395G23.3 inhibited cell proliferation and induced cell apoptosis. Mechanically, RP11-395G23.3 could increase ROR1 via sponging miR-124-3p as a ceRNA. Moreover, ROR1 expression was decreased with the downregulation of RP11-395G23.3, but was rescued by the co-transfection of the miR-124-3p inhibitor in ATC cells. Our research suggested that the RP11-395G23.3/miR-124-3p/ROR1 axis potentially acted as a potential target for the diagnosis of ATC.
Collapse
Affiliation(s)
- An-Cheng Qin
- The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu-Yuan Ma
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yong Jiang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei-Feng Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
45
|
Nakra T, Singh V, Nambirajan A, Malik PS, Mohan A, Jain D. Correlation of TTF-1 immunoexpression and EGFR mutation spectrum in non-small cell lung carcinoma. J Pathol Transl Med 2021; 55:279-288. [PMID: 34233113 PMCID: PMC8353134 DOI: 10.4132/jptm.2021.05.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Thyroid transcription factor (TTF-1) is a diagnostic marker expressed in 75%–85% of primary lung adenocarcinomas (ACs). Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene is the most common targetable driver alteration in lung AC. Previous studies have shown a positive correlation between TTF-1 and EGFR mutation status. We aimed to determine the predictive value of TTF-1 immunoexpression for underlying EGFR mutation status in a large Indian cohort. Methods This retrospective designed study was conducted with medical record data from 2011 to 2020. All cases of primary lung AC and non–small cell lung carcinoma not otherwise specified (NSCLC, NOS) with known TTF-1 expression diagnosed by immunohistochemistry using 8G7G3/1 antibodies and EGFR mutation status diagnosed by quantitative polymerase chain reaction were retrieved, reviewed, and theresults were analyzed. Results Among 909 patient samples diagnosed as lung AC and NSCLC, NOS, TTF-1 was positive in 76.8% cases (698/909) and EGFR mutations were detected in 29.6% (269/909). A strong positive correlation was present between TTF-1 positivity and EGFR mutation status (odds ratio, 3.61; p < .001), with TTF-1 positivity showing high sensitivity (90%) and negative predictive value (87%) for EGFR mutation. TTF-1 immunoexpression did not show significant correlation with uncommon/dual EGFR mutations (odds ratio, 1.69; p = .098). EGFR–tyrosine kinase inhibitor therapy was significantly superior to chemotherapy among EGFR mutant cases irrespective of TTF-1 status; however, no significant differences among survival outcomes were observed. Conclusions Our study confirms a strong positive correlation between TTF-1 expression and common EGFR mutations (exon 19 deletion and exon 21 L858R) in advanced lung AC with significantly high negative predictive value of TTF-1 for EGFR mutations.
Collapse
Affiliation(s)
- Tripti Nakra
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Sano K, Hayashi T, Suehara Y, Hosoya M, Takamochi K, Kohsaka S, Kishikawa S, Kishi M, Saito S, Takahashi F, Kaneko K, Suzuki K, Yao T, Ishijima M, Saito T. Transcription start site-level expression of thyroid transcription factor 1 isoforms in lung adenocarcinoma and its clinicopathological significance. J Pathol Clin Res 2021; 7:361-374. [PMID: 34014042 PMCID: PMC8185369 DOI: 10.1002/cjp2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
There are multiple transcription start sites (TSSs) in agreement with multiple transcript variants encoding different isoforms of NKX2-1/TTF-1 (thyroid transcription factor 1); however, the clinicopathological significance of each transcript isoform of NKX2-1/TTF-1 in lung adenocarcinoma (LAD) is unknown. Herein, TSS-level expression of NKX2-1/TTF-1 isoforms was evaluated in 71 LADs using bioinformatic analysis of cap analysis of gene expression (CAGE)-sequencing data, which provides genome-wide expression levels of the 5'-untranslated regions and the TSSs of different isoforms. Results of CAGE were further validated in 664 LADs using in situ hybridisation. Fourteen of 17 TSSs in NKX2-1/TTF-1 (80% of known TSSs in FANTOM5, an atlas of mammalian promoters) were identified in LADs, including TSSs 1-13 and 15; four isoforms of NKX2-1/TTF-1 transcripts (NKX2-1_001, NKX2-1_002, NKX2-1_004, and NKX2-1_005) were expressed in LADs, although NKX2-1_005 did not contain a homeodomain. Among those, six TSSs regulated NKX2-1_004 and NKX2-1_005, both of which contain exon 1. LADs with low expression of isoforms from TSS region 11 regulating exon 1 were significantly associated with poor prognosis in the CAGE data set. In the validation set, 62 tumours (9.3%) showed no expression of NKX2-1/TTF-1 exon 1; such tumours were significantly associated with older age, EGFR wild-type tumours, and poor prognosis. In contrast, 94 tumours, including 22 of 30 pulmonary invasive mucinous adenocarcinomas (IMAs) exhibited exon 1 expression without immunohistochemical TTF-1 protein expression. Furthermore, IMAs commonly exhibited higher exon 1 expression relative to that of exon 4/5, which contained a homeodomain in comparison with EGFR-mutated LADs. These transcriptome and clinicopathological results reveal that LAD use at least 80% of NKX2-1 TSSs and expression of the NKX2-1/TTF-1 transcript isoform without exon 1 (NKX2-1_004 and NKX2-1_005) defines a distinct subset of LAD characterised by aggressive behaviour in elder patients. Moreover, usage of alternative TSSs regions regulating NKX2-1_005 may occur in subsets of LADs.
Collapse
Affiliation(s)
- Kei Sano
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Takuo Hayashi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masaki Hosoya
- Department of Medical OncologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuya Takamochi
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Satsuki Kishikawa
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Monami Kishi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Satomi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuo Kaneko
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenji Suzuki
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Takashi Yao
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Tsuyoshi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
47
|
ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models. Blood 2021; 137:3365-3377. [PMID: 33512452 DOI: 10.1182/blood.2020008404] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/24/2020] [Indexed: 01/06/2023] Open
Abstract
Richter syndrome (RS) represents the transformation of chronic lymphocytic leukemia (CLL), typically to an aggressive lymphoma. Treatment options for RS are limited and the disease is often fatal. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed on CLL cells and other cancers but not on healthy adult tissues, making it an attractive, tumor-specific therapeutic target. VLS-101 is being developed as an antibody-drug conjugate (ADC) for therapy of ROR1-expressing (ROR1+) cancers. VLS-101 comprises UC-961 (a humanized immunoglobulin G1 monoclonal antibody that binds an extracellular epitope of human ROR1), a maleimidocaproyl-valine-citrulline-para-aminobenzoate linker, and the antimicrotubule cytotoxin monomethyl auristatin E (MMAE). VLS-101 binding to ROR1 results in rapid cellular internalization and delivery of MMAE to induce tumor cell death. We studied 4 RS patient-derived xenografts (RS-PDXs) with varying levels of ROR1 expression (11%, 32%, 85%, and 99% of cells). VLS-101 showed no efficacy in the lowest-expressing RS-PDX but induced complete remissions in those with higher levels of ROR1 expression. Responses were maintained during the posttherapy period, particularly after higher VLS-101 doses. In systemic ROR1+ RS-PDXs, VLS-101 dramatically decreased tumor burden in all RS-colonized tissues and significantly prolonged survival. Animals showed no adverse effects or weight loss. Our results confirm ROR1 as a target in RS and demonstrate the therapeutic potential of using an ADC directed toward ROR1 for the treatment of hematological cancers. A phase 1 clinical trial of VLS-101 (NCT03833180) is ongoing in patients with RS and other hematological malignancies.
Collapse
|
48
|
Wang WZ, Shilo K, Amann JM, Shulman A, Hojjat-Farsangi M, Mellstedt H, Schultz J, Croce CM, Carbone DP. Predicting ROR1/BCL2 combination targeted therapy of small cell carcinoma of the lung. Cell Death Dis 2021; 12:577. [PMID: 34088900 PMCID: PMC8178315 DOI: 10.1038/s41419-021-03855-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022]
Abstract
Small cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.
Collapse
Affiliation(s)
- Walter Z Wang
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA.,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Alyssa Shulman
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA.,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Håkan Mellstedt
- Department of Oncology-Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Carlo M Croce
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - David P Carbone
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
49
|
Zhao Y, Zhang D, Guo Y, Lu B, Zhao ZJ, Xu X, Chen Y. Tyrosine Kinase ROR1 as a Target for Anti-Cancer Therapies. Front Oncol 2021; 11:680834. [PMID: 34123850 PMCID: PMC8193947 DOI: 10.3389/fonc.2021.680834] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor tyrosine kinase ROR1 plays an essential role in embryogenesis and is overexpressed in many types of malignant tumors. Studies have demonstrated that it plays an important role in oncogenesis by activating cell survival signaling events, particularly the non-canonical WNT signaling pathway. Antibody-based immunotherapies targeting ROR1 have been developed and evaluated in preclinical and clinical studies with promising outcomes. However, small molecule inhibitors targeting ROR1 are underappreciated because of the initial characterization of ROR1 as a peusdokinase. The function of ROR1 as a tyrosine kinase remains poorly understood, although accumulating evidence have demonstrated its intrinsic tyrosine kinase activity. In this review, we analyzed the structural and functional features of ROR1 and discussed therapeutic strategies targeting this kinase.
Collapse
Affiliation(s)
- Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
50
|
Stuart WD, Fink-Baldauf IM, Tomoshige K, Guo M, Maeda Y. CRISPRi-mediated functional analysis of NKX2-1-binding sites in the lung. Commun Biol 2021; 4:568. [PMID: 33980985 PMCID: PMC8115294 DOI: 10.1038/s42003-021-02083-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/08/2021] [Indexed: 11/11/2022] Open
Abstract
The transcription factor NKX2-1/TTF-1 is involved in lung pathophysiology, including breathing, innate defense and tumorigenesis. To understand the mechanism by which NKX2-1 regulates genes involved in such pathophysiology, we have previously performed ChIP-seq and identified genome-wide NKX2-1-binding sites, which revealed that NKX2-1 binds to not only proximal promoter regions but also multiple intra- and inter-genic regions of the genes regulated by NKX2-1. However, the roles of such regions, especially non-proximal ones, bound by NKX2-1 have not yet been determined. Here, using CRISPRi (CRISPR/dCas9-KRAB), we scrutinize the functional roles of 19 regions/sites bound by NKX2-1, which are located in genes involved in breathing and innate defense (SFTPB, LAMP3, SFTPA1, SFTPA2) and lung tumorigenesis (MYBPH, LMO3, CD274/PD-L1). Notably, the CRISPRi approach reveals that a portion of NKX2-1-binding sites are functionally indispensable while the rest are dispensable for the expression of the genes, indicating that functional roles of NKX2-1-binding sites are unequally yoked.
Collapse
Affiliation(s)
- William D Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Iris M Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA.
| |
Collapse
|