1
|
Thakur V, Tiburcio de Freitas J, Li Y, Zhang K, Savadelis A, Bedogni B. MT1-MMP-dependent ECM processing regulates laminB1 stability and mediates replication fork restart. PLoS One 2021; 16:e0253062. [PMID: 34237080 PMCID: PMC8266045 DOI: 10.1371/journal.pone.0253062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains a mainstay of treatment for a majority of cancer patients. We have previously shown that the membrane bound matrix metalloproteinase MT1-MMP confers radio- and chemotherapy resistance to breast cancer via processing of the ECM and activation of integrinβ1/FAK signaling. Here, we further discovered that the nuclear envelope protein laminB1 is a potential target of integrinβ1/FAK. FAK interacts with laminB1 contributing to its stability. Stable laminB1 is found at replication forks (RFs) where it is likely to allow the proper positioning of RF protection factors, thus preventing RF degradation. Indeed, restoration of laminB1 expression rescues replication fork stalling and collapse that occurs upon MT1-MMP inhibition, and reduces DNA damage in breast cancer cells. Together, these data highlight a novel mechanism of laminB1 stability and replication fork restart via MT1-MMP dependent extracelluar matrix remodeling.
Collapse
Affiliation(s)
- Varsha Thakur
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Juliano Tiburcio de Freitas
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Yuan Li
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Alyssa Savadelis
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Barbara Bedogni
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
2
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Wu Z, Li S, Tang X, Wang Y, Guo W, Cao G, Chen K, Zhang M, Guan M, Yang D. Copy Number Amplification of DNA Damage Repair Pathways Potentiates Therapeutic Resistance in Cancer. Am J Cancer Res 2020; 10:3939-3951. [PMID: 32226530 PMCID: PMC7086350 DOI: 10.7150/thno.39341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/22/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Loss of DNA damage repair (DDR) in the tumor is an established hallmark of sensitivity to DNA damaging agents such as chemotherapy. However, there has been scant investigation into gain-of-function alterations of DDR genes in cancer. This study aims to investigate to what extent copy number amplification of DDR genes occurs in cancer, and what are their impacts on tumor genome instability, patient prognosis and therapy outcome. Methods: Retrospective analysis was performed on the clinical, genomics, and pharmacogenomics data from 10,489 tumors, matched peripheral blood samples, and 1,005 cancer cell lines. The key discoveries were verified by an independent patient cohort and experimental validations. Results: This study revealed that 13 of the 80 core DDR genes were significantly amplified and overexpressed across the pan-cancer scale. Tumors harboring DDR gene amplification exhibited decreased global mutation load and mechanism-specific mutation signature scores, suggesting an increased DDR proficiency in the DDR amplified tumors. Clinically, patients with DDR gene amplification showed poor prognosis in multiple cancer types. The most frequent Nibrin (NBN) gene amplification in ovarian cancer tumors was observed in 15 out of 31 independent ovarian cancer patients. NBN overexpression in breast and ovarian cancer cells leads to BRCA1-dependent olaparib resistance by promoting the phosphorylation of ATM-S1981 and homology-dependent recombination efficiency. Finally, integration of the cancer pharmacogenomics database of 37 genome-instability targeting drugs across 505 cancer cell lines revealed significant correlations between DDR gene copy number amplification and DDR drug resistance, suggesting candidate targets for increasing patient treatment response. Principal Conclusions: DDR gene amplification can lead to chemotherapy resistance and poor overall survival by augmenting DDR. These amplified DDR genes may serve as actionable clinical biomarkers for cancer management.
Collapse
|
4
|
Ge C, Vilfranc CL, Che L, Pandita RK, Hambarde S, Andreassen PR, Niu L, Olowokure O, Shah S, Waltz SE, Zou L, Wang J, Pandita TK, Du C. The BRUCE-ATR Signaling Axis Is Required for Accurate DNA Replication and Suppression of Liver Cancer Development. Hepatology 2019; 69:2608-2622. [PMID: 30693543 PMCID: PMC6541504 DOI: 10.1002/hep.30529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Replication fork stability during DNA replication is vital for maintenance of genomic stability and suppression of cancer development in mammals. ATR (ataxia-telangiectasia mutated [ATM] and RAD3-related) is a master regulatory kinase that activates the replication stress response to overcome replication barriers. Although many downstream effectors of ATR have been established, the upstream regulators of ATR and the effect of such regulation on liver cancer remain unclear. The ubiquitin conjugase BRUCE (BIR Repeat containing Ubiquitin-Conjugating Enzyme) is a guardian of chromosome integrity and activator of ATM signaling, which promotes DNA double-strand break repair through homologous recombination. Here we demonstrate the functions for BRUCE in ATR activation in vitro and liver tumor suppression in vivo. BRUCE is recruited to induced DNA damage sites. Depletion of BRUCE inhibited multiple ATR-dependent signaling events during replication stress, including activation of ATR itself, phosphorylation of its downstream targets CHK1 and RPA, and the mono-ubiquitination of FANCD2. Consequently, BRUCE deficiency resulted in stalled DNA replication forks and increased firing of new replication origins. The in vivo impact of BRUCE loss on liver tumorigenesis was determined using the hepatocellular carcinoma model induced by genotoxin diethylnitrosamine. Liver-specific knockout of murine Bruce impaired ATR activation and exacerbated inflammation, fibrosis and hepatocellular carcinoma, which exhibited a trabecular architecture, closely resembling human hepatocellular carcinoma (HCC). In humans, the clinical relevance of BRUCE down-regulation in liver disease was found in hepatitis, cirrhosis, and HCC specimens, and deleterious somatic mutations of the Bruce gene was found in human hepatocellular carcinoma in the Cancer Genome Atlas database. Conclusion: These findings establish a BRUCE-ATR signaling axis in accurate DNA replication and suppression of liver cancer in mice and humans and provides a clinically relevant HCC mouse model.
Collapse
Affiliation(s)
- Chunmin Ge
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | | | - Lixiao Che
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Raj K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio 45229
| | - Liang Niu
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267
| | - Olugbenga Olowokure
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Shimul Shah
- University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital Cancer Center; Harvard Medical School, Charlestown, MA 02129
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Chunying Du
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267,Corresponding author: Chunying Du, Ph.D. Phone: (513) 558-4803,
| |
Collapse
|
5
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
6
|
Horikoshi N, Pandita RK, Mujoo K, Hambarde S, Sharma D, Mattoo AR, Chakraborty S, Charaka V, Hunt CR, Pandita TK. β2-spectrin depletion impairs DNA damage repair. Oncotarget 2018; 7:33557-70. [PMID: 27248179 PMCID: PMC5085102 DOI: 10.18632/oncotarget.9677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination.
Collapse
Affiliation(s)
- Nobuo Horikoshi
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Kalpana Mujoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Abid R Mattoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
7
|
Gu S, Nguyen BN, Rao S, Li S, Shetty K, Rashid A, Shukla V, Deng CX, Mishra L, Mishra B. Alcohol, stem cells and cancer. Genes Cancer 2017; 8:695-700. [PMID: 29234487 PMCID: PMC5724803 DOI: 10.18632/genesandcancer.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dosage, gender, and genetic susceptibility to the effects of alcohol remained only partially elucidated. In this review, we summarize the current knowledge of the mechanisms underlying the role of alcohol in liver and gastrointestinal cancers. In addition, two recent pathways- DNA repair and TGF-β signaling which provide new insights into alcohol in the regulation of cancers and stem cells are also discussed here.
Collapse
Affiliation(s)
- Shoujun Gu
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shulin Li
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asif Rashid
- Departments of Gastroenterology and Liver Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Shukla
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Chu-Xia Deng
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lopa Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Surgical Service, Veterans Affairs Medicale Center, Washington DC, USA
| | - Bibhuti Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Chen J, Shukla V, Farci P, Andricovich J, Jogunoori W, Kwong LN, Katz LH, Shetty K, Rashid A, Su X, White J, Li L, Wang AY, Blechacz B, Raju GS, Davila M, Nguyen BN, Stroehlein JR, Chen J, Kim SS, Levin H, Machida K, Tsukamoto H, Michaely P, Tzatsos A, Mishra B, Amdur R, Mishra L. Loss of the transforming growth factor-β effector β2-Spectrin promotes genomic instability. Hepatology 2017; 65:678-693. [PMID: 28114741 PMCID: PMC5432427 DOI: 10.1002/hep.28927] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Exposure to genotoxins such as ethanol-derived acetaldehyde leads to DNA damage and liver injury and promotes the development of cancer. We report here a major role for the transforming growth factor β/mothers against decapentaplegic homolog 3 adaptor β2-Spectrin (β2SP, gene Sptbn1) in maintaining genomic stability following alcohol-induced DNA damage. β2SP supports DNA repair through β2SP-dependent activation of Fanconi anemia complementation group D2 (Fancd2), a core component of the Fanconi anemia complex. Loss of β2SP leads to decreased Fancd2 levels and sensitizes β2SP mutants to DNA damage by ethanol treatment, leading to phenotypes that closely resemble those observed in animals lacking both aldehyde dehydrogenase 2 and Fancd2 and resemble human fetal alcohol syndrome. Sptbn1-deficient cells are hypersensitive to DNA crosslinking agents and have defective DNA double-strand break repair that is rescued by ectopic Fancd2 expression. Moreover, Fancd2 transcription in response to DNA damage/transforming growth factor β stimulation is regulated by the β2SP/mothers against decapentaplegic homolog 3 complex. CONCLUSION Dysfunctional transforming growth factor β/β2SP signaling impacts the processing of genotoxic metabolites by altering the Fanconi anemia DNA repair pathway. (Hepatology 2017;65:678-693).
Collapse
Affiliation(s)
- Jian Chen
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Shukla
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Thoracic Oncology Section, Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaclyn Andricovich
- George Washington University, Department of Anatomy and Regenerative Biology, Washington, DC, 20052, USA
| | - Wilma Jogunoori
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lior H. Katz
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Sheba Medical Center, Department of Gastroenterology, Tel Hashomer, 52621, Israel
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Asif Rashid
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alan Yaoqi Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boris Blechacz
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gottumukkala S. Raju
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta Davila
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, George Washington University, Washington, DC, USA
| | - John R. Stroehlein
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sang Soo Kim
- National Cancer Center, Radiation Medicine Branch, Goyang, 410-769, Korea
| | - Heather Levin
- Department of Surgery, George Washington University, Washington, DC, USA
| | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA 90089, USA,Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033 USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California, Los Angeles, CA 90089, USA,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089 USA,Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90089, USA
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Alexandros Tzatsos
- George Washington University, Department of Anatomy and Regenerative Biology, Washington, DC, 20052, USA
| | - Bibhuti Mishra
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA,Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA
| | - Richard Amdur
- Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA
| | - Lopa Mishra
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, 20422, USA,Department of Surgery, George Washington University, Washington, DC, USA,Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC 20037, USA,Contact Information for Correspondence: Lopa Mishra, M.D., Director, Center for Translational Medicine, Professor, Department of Surgery, MFA, VA & George Washington University, 2300 Eye Street NW, Ross Hall #554, Washington, DC 20037, Tel: 240-401-2916, Fax: 202-462-2006, ,
| |
Collapse
|
9
|
Recovery from the DNA Replication Checkpoint. Genes (Basel) 2016; 7:genes7110094. [PMID: 27801838 PMCID: PMC5126780 DOI: 10.3390/genes7110094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022] Open
Abstract
Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress.
Collapse
|
10
|
Jang SW, Jung JK, Kim JM. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway. Cell Cycle 2016; 15:2336-45. [PMID: 27398742 DOI: 10.1080/15384101.2016.1201621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.
Collapse
Affiliation(s)
- Seok-Won Jang
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Jin Ki Jung
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Jung Min Kim
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| |
Collapse
|
11
|
Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res 2015; 44:648-56. [PMID: 26446986 PMCID: PMC4737135 DOI: 10.1093/nar/gkv1019] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/26/2015] [Indexed: 01/01/2023] Open
Abstract
To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells.
Collapse
Affiliation(s)
- Emilie Renaud
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| | - Aurelia Barascu
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| | - Filippo Rosselli
- Univ Paris-Sud, Laboratoire «Stabilité Génétique et Oncogenèse», Equipe Labellisée La Ligue Contre Le Cancer, 94805 Villejuif, France CNRS - UMR 8200, 94805 Villejuif, France Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
12
|
Guervilly JH, Takedachi A, Naim V, Scaglione S, Chawhan C, Lovera Y, Despras E, Kuraoka I, Kannouche P, Rosselli F, Gaillard PHL. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol Cell 2014; 57:123-37. [PMID: 25533188 DOI: 10.1016/j.molcel.2014.11.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/08/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France.
| | - Arato Takedachi
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Valeria Naim
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Sarah Scaglione
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Charly Chawhan
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Yoann Lovera
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Emmanuelle Despras
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Isao Kuraoka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Patricia Kannouche
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Filippo Rosselli
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Pierre-Henri L Gaillard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France.
| |
Collapse
|
13
|
Sanjiv K, Chen CW, Kakadiya R, Tala S, Suman S, Wu MH, Chen YH, Su TL, Lee TC. PI3K Inhibition Augments the Therapeutic Efficacy of a 3a-aza-Cyclopenta[α]indene Derivative in Lung Cancer Cells. Transl Oncol 2014; 7:256-266.e5. [PMID: 24913674 PMCID: PMC4101349 DOI: 10.1016/j.tranon.2014.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/03/2014] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
The synergistic targeting of DNA damage and DNA repair is a promising strategy for the development of new chemotherapeutic agents for human lung cancer. The DNA interstrand cross-linking agent BO-1509, a derivative of 3a-aza-cyclopenta[α]indene, was synthesized and combined with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 to treat human lung cancer cells. Our results showed that the BO-1509 and LY294002 combination synergistically killed lung cancer cells in culture and also suppressed the growth of lung cancer xenografts in mice, including those derived from gefitinib-resistant cells. We also found that LY294002 suppressed the induction of several DNA repair proteins by BO-1509 and inhibited the nuclear translocation of Rad51. On the basis of the results of the γH2AX foci formation assays, LY294002 apparently inhibited the repair of DNA damage that was induced by BO-1509. According to the complete blood profile, biochemical enzyme analysis, and histopathologic analysis of major organs, no apparent toxicity was observed in mice treated with BO-1509 alone or in combination with LY294002. Our results suggest that the combination of a DNA cross-linking agent with a PI3K inhibitor is a feasible strategy for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wei Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rajesh Kakadiya
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Satishkumar Tala
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sharda Suman
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan.
| | - Te-Chang Lee
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Meyer S, Tischkowitz M, Chandler K, Gillespie A, Birch JM, Evans DG. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet 2013; 51:71-5. [PMID: 24259538 DOI: 10.1136/jmedgenet-2013-101642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anaemia (FA) is an inherited condition characterised by congenital and developmental abnormalities and a strong cancer predisposition. In around 3-5% of cases FA is caused by biallelic mutations in the BRCA2 gene. Individuals heterozygous for BRCA2 mutations have an increased risk of inherited breast and ovarian cancer. We reviewed the mutation spectrum in BRCA2-associated FA, and the spectrum and frequency of BRCA2 mutations in distinct populations. The rarity of FA due to biallelic BRCA2 mutations supports a fundamental role of BRCA2 for prevention of malignant transformation during development. The spectrum of malignancies seen associated with FA support the concept of a tissue selectivity of BRCA2 mutations for development of FA-associated cancers. This specificity is illustrated by the distinct FA-associated BRCA2 mutations that appear to predispose to specific brain or haematological malignancies. For some populations, the number of FA-patients with biallelic BRCA2 disruption is smaller than that expected from the carrier frequency, and this implies that some pregnancies with biallelic BRCA2 mutations do not go to term. The apparent discrepancy between expected and observed incidence of BRCA2 mutation-associated FA in high-frequency carrier populations has important implications for the genetic counselling of couples with recurrent miscarriages from high-risk populations.
Collapse
Affiliation(s)
- Stefan Meyer
- Department of Paediatric and Adolescent Oncology, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
15
|
Mason JM, Das I, Arlt M, Patel N, Kraftson S, Glover TW, Sekiguchi JM. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability. Hum Mol Genet 2013; 22:4901-13. [PMID: 23863462 DOI: 10.1093/hmg/ddt340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.
Collapse
|
16
|
Somyajit K, Basavaraju S, Scully R, Nagaraju G. ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol Cell Biol 2013; 33:1830-44. [PMID: 23438602 PMCID: PMC3624173 DOI: 10.1128/mcb.01521-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 01/03/2023] Open
Abstract
The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G2 phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G2/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|