1
|
Zhao K, Yan Y, Jin XK, Pan T, Zhang SM, Yang CH, Rao ZY, Zhang XZ. An orally administered gene editing nanoparticle boosts chemo-immunotherapy in colorectal cancer. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01904-5. [PMID: 40269250 DOI: 10.1038/s41565-025-01904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Chemoresistance and immunosuppression are common obstacles to the efficacy of chemo-immunotherapy in colorectal cancer (CRC) and are regulated by mitochondrial chaperone proteins. Here we show that the disruption of the tumour necrosis factor receptor-associated protein 1 (TRAP1) gene, which encodes a mitochondrial chaperone in tumour cells, causes the translocation of cyclophilin D in tumour cells. This process results in the continuous opening of the mitochondrial permeability transition pore, which enhances chemotherapy-induced cell necrosis and promotes immune responses. On the basis of this discovery we developed an oral CRISPR-Cas9 delivery system based on zwitterionic and polysaccharide polymer-coated nanocomplexes that disrupts the TRAP1 gene in CRC. This system penetrates the intestinal mucus layer and undergoes epithelial transcytosis, accumulating in CRC tissues. It enhances chemotherapeutic efficacy by overcoming chemoresistance and activating the tumour immune microenvironment in orthotopic, chemoresistant and spontaneous CRC models, with remarkable synergistic antitumour effects. This oral CRISPR-Cas9 delivery system represents a promising therapeutic strategy for the clinical management of CRC.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Yu Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Chi-Hui Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China.
| |
Collapse
|
2
|
Saleem MZ, Huang R, Huang Y, Guo X, Liu Y, Gao M, Fan Y, Chen ZS, Ke ZF, Ye S, Xu J. Targeting TRAP1-dependent metabolic reprogramming to overcome doxorubicin resistance in quiescent breast cancer. Drug Resist Updat 2025; 81:101226. [PMID: 40086176 DOI: 10.1016/j.drup.2025.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
AIMS TRAP1 is involved in metabolic reprogramming and promotes drug resistance. We aimed to explore whether a novel HSP90 inhibitor, C210, overcomes doxorubicin (DOX) resistance of quiescent breast cancer cells by targeting TRAP1. METHODS Breast cancer cells were induced to quiescence by hypoxia and low glucose. The relationship of cell metabolism with HSP90 and TRAP1 was investigated by Western blotting, ECAR, OCR, mitochondrial complex activity, and proteomic analysis. The targets of C210 and their functions were analyzed by SPR and immunoprecipitation. The antitumor effect in vivo was investigated with mouse tumor model. RESULTS In hypoxia and glucose deprivation, breast cancer cells exhibited elevated TRAP1 and an OXPHOS-enhanced quiescent phenotype. These cells were highly resistant to DOX but more sensitive to C210. C210 disrupted TRAP1's interaction with OXPHOS-associated client proteins, prompting proteasome-dependent degradation of these proteins, thereby reducing OCR, mitochondrial ATP production and resulting in selective elimination of the quiescent cancer cells by inducing mitochondrial apoptosis which could be reversed by exogenous ATP. Moreover, C210 targeted glycolytic, amino acid, and β-oxidation-associated proteome. C210 demonstrated promising in vivo anticancer efficacy which was particularly related to OXPHOS inhibition. CONCLUSIONS C210 eliminates DOX-resistant quiescent breast cancer cells by targeting TRAP1-dependent bioenergetics.
Collapse
Affiliation(s)
- Muhammad Zubair Saleem
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Ruyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yingying Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Xin Guo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yang Liu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Miao Gao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Yinjuan Fan
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zun-Fu Ke
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shengnan Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China.
| | - Jianhua Xu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 PMCID: PMC11817126 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
4
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
5
|
Xiang Y, Liu X, Sun Q, Liao K, Liu X, Zhao Z, Feng L, Liu Y, Wang B. The development of cancers research based on mitochondrial heat shock protein 90. Front Oncol 2023; 13:1296456. [PMID: 38098505 PMCID: PMC10720920 DOI: 10.3389/fonc.2023.1296456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial heat shock protein 90 (mtHsp90), including Tumor necrosis factor receptor-associated protein 1 (TRAP1) and Hsp90 translocated from cytoplasm, modulating cellular metabolism and signaling pathways by altering the conformation, activity, and stability of numerous client proteins, and is highly expressed in tumors. mtHsp90 inhibition results in the destabilization and eventual degradation of its client proteins, leading to interference with various tumor-related pathways and efficient control of cancer cell development. Among these compounds, gamitrinib, a specific mtHsp90 inhibitor, has demonstrated its safety and efficacy in several preclinical investigations and is currently undergoing evaluation in clinical trials. This review aims to provide a comprehensive overview of the present knowledge pertaining to mtHsp90, encompassing its structure and function. Moreover, our main emphasis is on the development of mtHsp90 inhibitors for various cancer therapies, to present a thorough overview of the recent pre-clinical and clinical advancements in this field.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qi Sun
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaohan Liu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Zihui Zhao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Eyme KM, Sammarco A, Jha R, Mnatsakanyan H, Pechdimaljian C, Carvalho L, Neustadt R, Moses C, Alnasser A, Tardiff DF, Su B, Williams KJ, Bensinger SJ, Chung CY, Badr CE. Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models. Sci Transl Med 2023; 15:eabq6288. [PMID: 36652537 PMCID: PMC9942236 DOI: 10.1126/scitranslmed.abq6288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.
Collapse
Affiliation(s)
- Katharina M. Eyme
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095
| | - Roshani Jha
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Caline Pechdimaljian
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Litia Carvalho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115
| | - Rudolph Neustadt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Charlotte Moses
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Ahmad Alnasser
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | | | - Baolong Su
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Kevin J. Williams
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | | | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115,Correspondence:
| |
Collapse
|
7
|
Wang L, Li D, Su X, Zhao Y, Huang A, Li H, Li J, Xia W, Jia T, Zhang H, Dong J, Liu X, Shao N. AGO4 suppresses tumor growth by modulating autophagy and apoptosis via enhancing TRIM21-mediated ubiquitination of GRP78 in a p53-independent manner. Oncogene 2023; 42:62-77. [PMID: 36371565 DOI: 10.1038/s41388-022-02526-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Da Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueting Su
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Yuechao Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Xia
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tianqi Jia
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hongwen Zhang
- Interventional Ward, Dongfang Hospital, Fuzhou, 350025, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
8
|
Shu Y, Hao Y, Feng J, Liu H, Li S, Feng J, Jiang Z, Ye L, Zhou Y, Sun Y, Zhou Z, Wei H, Gao P, Zhang H, Sun L. Non-canonical phosphoglycerate dehydrogenase activity promotes liver cancer growth via mitochondrial translation and respiratory metabolism. EMBO J 2022; 41:e111550. [PMID: 36314841 PMCID: PMC9713714 DOI: 10.15252/embj.2022111550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is a key serine biosynthesis enzyme whose aberrant expression promotes various types of tumors. Recently, PHGDH has been found to have some non-canonical functions beyond serine biosynthesis, but its specific mechanisms in tumorigenesis remain unclear. Here, we show that PHGDH localizes to the inner mitochondrial membrane and promotes the translation of mitochondrial DNA (mtDNA)-encoded proteins in liver cancer cells. Mechanistically, we demonstrate that mitochondrial PHGDH directly interacts with adenine nucleotide translocase 2 (ANT2) and then recruits mitochondrial elongation factor G2 (mtEFG2) to promote mitochondrial ribosome recycling efficiency, thereby promoting mtDNA-encoded protein expression and subsequent mitochondrial respiration. Moreover, we show that treatment with a mitochondrial translation inhibitor or depletion of mtEFG2 diminishes PHGDH-mediated tumor growth. Collectively, our findings uncover a previously unappreciated function of PHGDH in tumorigenesis acting via promotion of mitochondrial translation and bioenergetics.
Collapse
Affiliation(s)
- Ying Shu
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, Anhui Province Key Laboratory of Biomedical Aging ResearchUniversity of Science and Technology of ChinaHefeiChina
| | - Yijie Hao
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Junru Feng
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Haiying Liu
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Shi‐ting Li
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Jiaqian Feng
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Zetan Jiang
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Ling Ye
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Yingli Zhou
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Yuchen Sun
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Zilong Zhou
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Haoran Wei
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Gao
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Huafeng Zhang
- Division of Life Science and Medicine, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical SciencesUniversity of Science and Technology of ChinaHefeiChina
- Division of Life Science and Medicine, Anhui Province Key Laboratory of Biomedical Aging ResearchUniversity of Science and Technology of ChinaHefeiChina
| | - Linchong Sun
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
9
|
Therapeutic Drug-Induced Metabolic Reprogramming in Glioblastoma. Cells 2022; 11:cells11192956. [PMID: 36230918 PMCID: PMC9563867 DOI: 10.3390/cells11192956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma WHO IV (GBM), the most common primary brain tumor in adults, is a heterogenous malignancy that displays a reprogrammed metabolism with various fuel sources at its disposal. Tumor cells primarily appear to consume glucose to entertain their anabolic and catabolic metabolism. While less effective for energy production, aerobic glycolysis (Warburg effect) is an effective means to drive biosynthesis of critical molecules required for relentless growth and resistance to cell death. Targeting the Warburg effect may be an effective venue for cancer treatment. However, past and recent evidence highlight that this approach may be limited in scope because GBM cells possess metabolic plasticity that allows them to harness other substrates, which include but are not limited to, fatty acids, amino acids, lactate, and acetate. Here, we review recent key findings in the literature that highlight that GBM cells substantially reprogram their metabolism upon therapy. These studies suggest that blocking glycolysis will yield a concomitant reactivation of oxidative energy pathways and most dominantly beta-oxidation of fatty acids.
Collapse
|
10
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
11
|
Wengert LA, Backe SJ, Bourboulia D, Mollapour M, Woodford MR. TRAP1 Chaperones the Metabolic Switch in Cancer. Biomolecules 2022; 12:biom12060786. [PMID: 35740911 PMCID: PMC9221471 DOI: 10.3390/biom12060786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial function is dependent on molecular chaperones, primarily due to their necessity in the formation of respiratory complexes and clearance of misfolded proteins. Heat shock proteins (Hsps) are a subset of molecular chaperones that function in all subcellular compartments, both constitutively and in response to stress. The Hsp90 chaperone TNF-receptor-associated protein-1 (TRAP1) is primarily localized to the mitochondria and controls both cellular metabolic reprogramming and mitochondrial apoptosis. TRAP1 upregulation facilitates the growth and progression of many cancers by promoting glycolytic metabolism and antagonizing the mitochondrial permeability transition that precedes multiple cell death pathways. TRAP1 attenuation induces apoptosis in cellular models of cancer, identifying TRAP1 as a potential therapeutic target in cancer. Similar to cytosolic Hsp90 proteins, TRAP1 is also subject to post-translational modifications (PTM) that regulate its function and mediate its impact on downstream effectors, or ‘clients’. However, few effectors have been identified to date. Here, we will discuss the consequence of TRAP1 deregulation in cancer and the impact of post-translational modification on the known functions of TRAP1.
Collapse
Affiliation(s)
- Laura A. Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
12
|
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur J Med Chem 2022; 238:114516. [DOI: 10.1016/j.ejmech.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022]
|
13
|
Wei S, Yin D, Yu S, Lin X, Savani MR, Du K, Ku Y, Wu D, Li S, Liu H, Tian M, Chen Y, Bowie M, Hariharan S, Waitkus M, Keir ST, Sugarman ET, Deek RA, Labrie M, Khasraw M, Lu Y, Mills GB, Herlyn M, Wu K, Liu L, Wei Z, Flaherty KT, Abdullah K, Zhang G, Ashley DM. Antitumor Activity of a Mitochondrial-Targeted HSP90 Inhibitor in Gliomas. Clin Cancer Res 2022; 28:2180-2195. [PMID: 35247901 DOI: 10.1158/1078-0432.ccr-21-0833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/31/2021] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas. EXPERIMENTAL DESIGN A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells. Integrated analyses of RNA sequencing (RNAseq) and reverse phase protein array (RPPA) data were performed to reveal the potential antitumor mechanisms of Gamitrinib. Neurospheres, patient-derived organoids (PDO), cell line-derived xenografts (CDX), and patient-derived xenografts (PDX) models were generated to further evaluate the therapeutic efficacy of Gamitrinib. RESULTS Gamitrinib inhibited cell proliferation and induced cell apoptosis and death in 17 primary glioma cell lines, 6 TMZ-resistant glioma cell lines, 4 neurospheres, and 3 PDOs. Importantly, Gamitrinib significantly delayed the tumor growth and improved survival of mice in both CDX and PDX models in which tumors were either subcutaneously or intracranially implanted. Integrated computational analyses of RNAseq and RPPA data revealed that Gamitrinib exhibited its antitumor activity via (i) suppressing mitochondrial biogenesis, OXPHOS, and cell-cycle progression and (ii) activating the energy-sensing AMP-activated kinase, DNA damage, and stress response. CONCLUSIONS These preclinical findings established the therapeutic role of Gamitrinib in gliomas and revealed the inhibition of mitochondrial biogenesis and tumor bioenergetics as the primary antitumor mechanisms in gliomas.
Collapse
Affiliation(s)
- Shiyou Wei
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Delong Yin
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina.,Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengnan Yu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina.,Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Lin
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey
| | - Milan R Savani
- Department of Neurosurgery, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kuang Du
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey
| | - Yin Ku
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Di Wu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaohui Chen
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Michelle Bowie
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Seethalakshmi Hariharan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Matthew Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Eric T Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Rebecca A Deek
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Yiling Lu
- Division of Cancer Medicine, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon
| | | | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lunxu Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Wei
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Kalil Abdullah
- Department of Neurosurgery, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gao Zhang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
14
|
Hayat U, Elliott GT, Olszanski AJ, Altieri DC. Feasibility and safety of targeting mitochondria for cancer therapy – preclinical characterization of gamitrinib, a first-in-class, mitochondriaL-targeted small molecule Hsp90 inhibitor. Cancer Biol Ther 2022; 23:117-126. [PMID: 35129069 PMCID: PMC8820820 DOI: 10.1080/15384047.2022.2029132] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are key tumor drivers, but their suitability as a therapeutic target is unknown. Here, we report on the preclinical characterization of Gamitrinib (GA mitochondrial matrix inhibitor), a first-in-class anticancer agent that couples the Heat Shock Protein-90 (Hsp90) inhibitor 17-allylamino-geldanamycin (17-AAG) to the mitochondrial-targeting moiety, triphenylphosphonium. Formulated as a stable (≥24 weeks at −20°C) injectable suspension produced by microfluidization (<200 nm particle size), Gamitrinib (>99.5% purity) is heavily bound to plasma proteins (>99%), has intrinsic clearance from liver microsomes of 3.30 mL/min/g and minimally penetrates a Caco-2 intestinal monolayer. Compared to 17-AAG, Gamitrinib has slower clearance (85.6 ± 5.8 mL/min/kg), longer t1/2 (12.2 ± 1.55 h), mean AUC0-t of 783.1 ± 71.3 h∙ng/mL, and unique metabolism without generation of 17-AG. Concentrations of Gamitrinib that trigger tumor cell killing (IC50 ~1-4 µM) do not affect cytochrome P450 isoforms CYP1A2, CYP2A6, CYP2B6, CYP2C8 or ion channel conductance (Nav1.5, Kv4.3/KChIP2, Cav1.2, Kv1.5, KCNQ1/mink, HCN4, Kir2). Twice weekly IV administration of Gamitrinib to Sprague-Dawley rats or beagle dogs for up to 36 d is feasible. At dose levels of up to 5 (rats)- and 12 (dogs)-fold higher than therapeutically effective doses in mice (10 mg/kg), Gamitrinib treatment is unremarkable in dogs with no alterations in clinical-chemistry parameters, heart function, or tissue histology, and causes occasional inflammation at the infusion site and mild elevation of serum urea nitrogen in rats (≥10 mg/kg/dose). Therefore, targeting mitochondria for cancer therapy is feasible and well tolerated. A publicly funded, first-in-human phase I clinical trial of Gamitrinib in patients with advanced cancer is ongoing (ClinicalTrials.gov NCT04827810)
Collapse
Affiliation(s)
- Umar Hayat
- Pharmaceutical Advisors, LLC, Princeton, USA
| | | | - Anthony J. Olszanski
- Phase 1 Developmental Therapeutics Program, Department of Hematology/Oncology Fox Chase Cancer Center, Philadelphia
| | - Dario C. Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, USA
| |
Collapse
|
15
|
Yoon NG, Lee H, Kim SY, Hu S, Kim D, Yang S, Hong KB, Lee JH, Kang S, Kim BG, Myung K, Lee C, Kang BH. Mitoquinone Inactivates Mitochondrial Chaperone TRAP1 by Blocking the Client Binding Site. J Am Chem Soc 2021; 143:19684-19696. [PMID: 34758612 DOI: 10.1021/jacs.1c07099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat shock protein 90 (Hsp90) family proteins are molecular chaperones that modulate the functions of various substrate proteins (clients) implicated in pro-tumorigenic pathways. In this study, the mitochondria-targeted antioxidant mitoquinone (MitoQ) was identified as a potent inhibitor of mitochondrial Hsp90, known as a tumor necrosis factor receptor-associated protein 1 (TRAP1). Structural analyses revealed an asymmetric bipartite interaction between MitoQ and the previously unrecognized drug binding sites located in the middle domain of TRAP1, believed to be a client binding region. MitoQ effectively competed with TRAP1 clients, and MitoQ treatment facilitated the identification of 103 TRAP1-interacting mitochondrial proteins in cancer cells. MitoQ and its redox-crippled SB-U014/SB-U015 exhibited more potent anticancer activity in vitro and in vivo than previously reported mitochondria-targeted TRAP1 inhibitors. The findings indicate that targeting the client binding site of Hsp90 family proteins offers a novel strategy for the development of potent anticancer drugs.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Darong Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Sujae Yang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
16
|
TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10111829. [PMID: 34829705 PMCID: PMC8614808 DOI: 10.3390/antiox10111829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.
Collapse
|
17
|
Esmaeili SA, Sahranavard S, Salehi A, Bagheri V. Selectively targeting cancer stem cells: Current and novel therapeutic strategies and approaches in the effective eradication of cancer. IUBMB Life 2021; 73:1045-1059. [PMID: 34184810 DOI: 10.1002/iub.2524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of cells in malignant cancers, which possess self-renewal capacity, tumor-initiating capability, and pluripotency, as well as being responsible for tumor maintenance, metastasis, relapse, and chemoresistance. The treatment modalities previously established for cancer included surgery, chemotherapy, and radiotherapy. The majority of tumor cells of non-CSCs could be eradicated using conventional chemotherapy and radiotherapy. Therefore, novel and promising therapeutic strategies that selectively target CSCs are of great importance. In this review, we described different therapeutic strategies such as immunotherapy, metabolism-based therapeutic strategies, and additional potential therapeutic approaches (targeting microRNAs [miRNAs], histone deacetylase, and DNA methyl transferase) against CSCs. Taken together, due to the inefficiency of anticancer single therapies, targeting CSCs through their metabolism and using immunotherapy and miRNAs besides classical chemo- and radiotherapy may exert better therapeutic effects.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Sahranavard
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj, Iran
| | - Vahid Bagheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
18
|
Masgras I, Laquatra C, Cannino G, Serapian SA, Colombo G, Rasola A. The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Semin Cancer Biol 2021; 76:45-53. [PMID: 34242740 DOI: 10.1016/j.semcancer.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
TRAP1, the mitochondrial component of the Hsp90 family of molecular chaperones, displays important bioenergetic and proteostatic functions. In tumor cells, TRAP1 contributes to shape metabolism, dynamically tuning it with the changing environmental conditions, and to shield from noxious insults. Hence, TRAP1 activity has profound effects on the capability of neoplastic cells to evolve towards more malignant phenotypes. Here, we discuss our knowledge on the biochemical functions of TRAP1 in the context of a growing tumor mass, and we analyze the possibility of targeting its chaperone functions for developing novel anti-neoplastic approaches.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy; Istituto di Neuroscienze, Consiglio Nazionale Delle Ricerche (CNR), Padova, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Giuseppe Cannino
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | | | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy.
| |
Collapse
|
19
|
Rangel DF, Dubeau L, Park R, Chan P, Ha DP, Pulido MA, Mullen DJ, Vorobyova I, Zhou B, Borok Z, Offringa IA, Lee AS. Endoplasmic reticulum chaperone GRP78/BiP is critical for mutant Kras-driven lung tumorigenesis. Oncogene 2021; 40:3624-3632. [PMID: 33931739 DOI: 10.1038/s41388-021-01791-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide and KRAS is the most commonly mutated gene in lung adenocarcinoma (LUAD). The 78-kDa glucose-regulated protein GRP78/BiP is a key endoplasmic reticulum chaperone protein and a major pro-survival effector of the unfolded protein response (UPR). Analysis of the Cancer Genome Atlas database and immunostain of patient tissues revealed that compared to normal lung, GRP78 expression is generally elevated in human lung cancers, including tumors bearing the KRASG12D mutation. To test the requirement of GRP78 in human lung oncogenesis, we generated mouse models containing floxed Grp78 and Kras Lox-Stop-Lox G12D (KrasLSL-G12D) alleles. Simultaneous activation of the KrasG12D allele and knockout of the Grp78 alleles were achieved in the whole lung or selectively in lung alveolar epithelial type 2 cells known to be precursors for adenomas that progress to LUAD. Here we report that GRP78 haploinsufficiency is sufficient to suppress KrasG12D-mediated lung tumor progression and prolong survival. Furthermore, GRP78 knockdown in human lung cancer cell line A427 (KrasG12D/+) leads to activation of UPR and apoptotic markers and loss of cell viability. Our studies provide evidence that targeting GRP78 represents a novel therapeutic approach to suppress mutant KRAS-mediated lung tumorigenesis.
Collapse
Affiliation(s)
- Daisy Flores Rangel
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Louis Dubeau
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Park
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priscilla Chan
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Mario A Pulido
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel J Mullen
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ivetta Vorobyova
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Beiyun Zhou
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zea Borok
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ite A Offringa
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Lee YG, Kim HW, Nam Y, Shin KJ, Lee YJ, Park DH, Rhee HW, Seo JK, Chae YC. LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival. Oncogenesis 2021; 10:18. [PMID: 33637676 PMCID: PMC7910295 DOI: 10.1038/s41389-021-00306-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Yu Geon Lee
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hui Won Kim
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeji Nam
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Do Hong Park
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Kon Seo
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young Chan Chae
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
21
|
Wang X, Zhang Y, Fei S, Awais MM, Zheng H, Feng M, Sun J. Heat Shock Protein 75 (TRAP1) facilitate the proliferation of the Bombyx mori nucleopolyhedrovirus. Int J Biol Macromol 2021; 175:372-378. [PMID: 33549665 DOI: 10.1016/j.ijbiomac.2021.01.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
The viruses utilize multiple cellular proteins to facilitate their proliferation. The Heat Shock Protein (HSP), the highly conserved protein in eukaryotes and prokaryotes, plays a critical role in facilitating viral proliferation. However, less is known about the role of the HSPs in the life cycles of the Baculoviruses. We constructed recombinant Bombyx mori nucleopolyhedrovirus and discovered the Heat Shock Protein 75 (TRAP1) in the B. mori ovary (BmN) cells by the co-immunoprecipitation experiment using the GP64 (glycoprotein 64) as the bait protein. Tissue expression profile analysis of B. mori indicated that the TRAP1 gene has higher expression levels in the ovary, midgut, and hemolymph. Down-regulation of TRAP1 via RNA interference (RNAi) and geldanamycin (GA, a TRAP1 inhibitor) treatment can reduce the expression level of the major capsid protein VP39 (viral protein 39) of BmNPV. In contrast, the up-regulation of TRAP1 via overexpression can increase the expression level of the VP39. These results indicated that the TRAP1 of B. mori could facilitate the proliferation of the BmNPV. This study provided new insights into the function of TRAP1, and the basic mechanisms of the baculoviruses life cycle for disease prevention.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yinong Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Hao Zheng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Min Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
22
|
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM. Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 2020; 14:100995. [PMID: 33338880 PMCID: PMC7749402 DOI: 10.1016/j.tranon.2020.100995] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
High expression of extracellular heat shock proteins (HSPs) indicates highly aggressive tumors. HSP profiling of extracellular vesicles (EVs) derived from various biological fluids and released by immune cells may open new perspectives for an identification of diagnostic, prognostic and predictive biomarkers of cancer. Identification of specific microRNAs targeting HSPs in EVs may be a promising strategy for the discovery of novel biomarkers of cancer.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 199192 Moscow, Russia.
| | | | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
23
|
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci 2020; 21:ijms21217941. [PMID: 33114695 PMCID: PMC7663685 DOI: 10.3390/ijms21217941] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Collapse
|
24
|
Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine 2020; 59:102943. [PMID: 32818805 PMCID: PMC7452656 DOI: 10.1016/j.ebiom.2020.102943] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are dynamic organelles that have essential metabolic activity and are regarded as signalling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological pathways. However, mitochondria can influence all processes linked to oncogenesis, starting from malignant transformation to metastatic dissemination. In this review, we describe how alterations in the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing the most recent discoveries and the many unanswered questions. We also highlight that expanding our understanding of mitochondrial regulation and function mechanisms in the context of cancer cell metabolism could be an important task in biomedical research, thus offering the possibility of targeting mitochondria for the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
25
|
Liu Z, Gu S, Lu T, Wu K, Li L, Dong C, Zhou Y. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res 2020; 39:144. [PMID: 32727517 PMCID: PMC7388476 DOI: 10.1186/s13046-020-01646-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal forms of adult cancer with poor prognosis. Substantial evidence indicates that reactive oxygen species (ROS) are important modulators of aggressive cancer behavior. However, the mechanism by which ESCC cells integrate redox signals to modulate carcinoma progression remains elusive. METHODS The expression of interferon alpha inducible protein 6 (IFI6) in clinical ESCC tissues and cell lines was detected by RT-PCR and Western blotting. The correlation between IFI6 expression levels and aggressive ESCC disease stage was examined by immunohistochemistry. Bioinformatic analysis was conducted to explore the potential function of IFI6 in ESCC. ESCC cell lines stably depleted of IFI6 and ectopically expressing IFI6 were established using lentiviruses expressing shRNAs and an IFI6 expression plasmid, respectively. The effects of IFI6 on ESCC cells were determined by cell-based analyses, including EdU assay, apoptotic assay, cellular and mitochondria-specific ROS detection, seahorse extracellular flux, and mitochondrial calcium flux assays. Blue native-polyacrylamide gel electrophoresis was used to determine mitochondrial supercomplex assembly. Transcriptional activation of NADPH oxidase 4 (NOX4) via ATF3 was confirmed by dual luciferase assay. In vivo tumor growth was determined in mouse xenograft models. RESULTS We find that the expression of IFI6, an IFN-stimulated gene localized in the inner mitochondrial membrane, is markedly elevated in ESCC patients and a panel of ESCC cell lines. High IFI6 expression correlates with aggressive disease phenotype and poor prognosis in ESCC patients. IFI6 depletion suppresses proliferation and induces apoptosis by increasing ROS accumulation. Mechanistically, IFI6 ablation induces mitochondrial calcium overload by activating mitochondrial Ca2+ uniporter and subsequently ROS production. Following IFI6 ablation, mitochondrial ROS accumulation is also induced by mitochondrial supercomplex assembly suppression and oxidative phosphorylation dysfunction, while IFI6 overexpression produces the opposite effects. Furthermore, energy starvation induced by IFI6 inhibition drives endoplasmic reticulum stress through disrupting endoplasmic reticulum calcium uptake, which upregulates NOX4-derived ROS production in an ATF3-dependent manner. Finally, the results in xenograft models of ESCC further corroborate the in vitro findings. CONCLUSION Our study unveils a novel redox homeostasis signaling pathway that regulates ESCC pathobiology and identifies IFI6 as a potential druggable target in ESCC.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Tiancheng Lu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Kaiqing Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China.
| |
Collapse
|
26
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
27
|
New insights into molecular chaperone TRAP1 as a feasible target for future cancer treatments. Life Sci 2020; 254:117737. [PMID: 32376268 DOI: 10.1016/j.lfs.2020.117737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), a molecular chaperone, is a major member of the mitochondrial heat shock protein 90 (Hsp90) family. Studies have shown that TRAP1 can prevent hypoxia-induced damage to cardiomyocytes, maintain cardiomyocytes viability and mitochondrial membrane potential, and protect cardiomyocytes. In addition, it can also protect astrocytes from ischemic damage in vitro. In recent years, there have been many new discoveries in tumors. The abnormal expression of TRAP1 is closely related to the occurrence and development of various tumors. TRAP1 protein seems to be a central regulatory protein, involved in the activation of various oncogenic proteins and signaling pathways, and has a balanced function at tumor transformation and the intersection of different metabolic processes. Targeting its chaperone activity and molecular interactions can destroy the metabolism and survival adaptability of tumor cells, paving the way for the development of highly selective mitochondrial anti-tumor drugs. Moreover, the combination of TRAP1 inhibition and current traditional cancer therapies has shown promising applications. These findings have important implications for the diagnosis and treatment of tumors. Therefore, we reviewed the recently identified functions of the molecular chaperone TRAP1 in cancer development and progression, as well as the discovery and recent advances in selective TRAP1 inhibitors as anticancer drug therapies, opening up new attractive prospects for exploring strategies for targeting TRAP1 as a tumor cell target.
Collapse
|
28
|
Bergman O, Karry R, Milhem J, Ben-Shachar D. NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Mol Psychiatry 2020; 25:805-820. [PMID: 30531937 DOI: 10.1038/s41380-018-0309-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria together with other cellular components maintain a constant crosstalk, modulating transcriptional and posttranslational processes. We and others demonstrated mitochondrial multifaceted dysfunction in schizophrenia, with aberrant complex I (CoI) as a major cause. Here we show deficits in CoI activity and homeostasis in schizophrenia-derived cell lines. Focusing on a core CoI subunit, NDUFV2, one of the most severely affected subunits in schizophrenia, we observed reduced protein level and functioning, with no change in mRNA transcripts. We further show that NDUFV2 pseudogene (NDUFV2P1) expression is increased in schizophrenia-derived cells and in postmortem brain specimens. In schizophrenia and controls pooled samples, NDUFV2P1 level demonstrated a significant inverse correlation with NDUFV2 pre- and matured protein level and with CoI-driven cellular respiration. Our data suggest a role for a pseudogene in its parent-gene regulation and possibly in CoI dysfunction in schizophrenia. The abnormal expression of the pseudogene may be one element of a vicious circle in which CoI deficits lead to mitochondrial dysfunction potentially affecting genome-wide regulation of gene expression, including the expression of pseudogenes.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Karry
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jumana Milhem
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
29
|
Cell repopulation, rewiring metabolism, and immune regulation in cancer radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Faienza F, Lambrughi M, Rizza S, Pecorari C, Giglio P, Salamanca Viloria J, Allega MF, Chiappetta G, Vinh J, Pacello F, Battistoni A, Rasola A, Papaleo E, Filomeni G. S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli. Biochem Pharmacol 2020; 176:113869. [PMID: 32088262 DOI: 10.1016/j.bcp.2020.113869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e. phosphorylation, can modify its capability to bind to different client proteins and modulate its oncogenic activity. Recently, it has been also demonstrated that TRAP1 is S-nitrosylated at Cys501, a redox modification associated with its degradation via the proteasome. Here we report molecular dynamics simulations of TRAP1, together with analysis of long-range structural communication, providing a model according to which Cys501 S-nitrosylation induces conformational changes to distal sites in the structure of the protein. The modification is also predicted to alter open and closing motions for the chaperone function. By means of colorimetric assays and site directed mutagenesis aimed at generating C501S variant, we also experimentally confirmed that selective S-nitrosylation of Cys501 decreases ATPase activity of recombinant TRAP1. Coherently, C501S mutant was more active and conferred protection to cell death induced by staurosporine. Overall, our results provide the first in silico, in vitro and cellular evidence of the relevance of Cys501 S-nitrosylation in TRAP1 biology.
Collapse
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Chiara Pecorari
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Juan Salamanca Viloria
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Giovanni Chiappetta
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Joëlle Vinh
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Francesca Pacello
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Battistoni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark.
| |
Collapse
|
31
|
Esencan E, Jiang Z, Wang T, Zhang M, Soylemez-Imamoglu G, Seli E. Impaired Mitochondrial Stress Response due to CLPP Deletion Is Associated with Altered Mitochondrial Dynamics and Increased Apoptosis in Cumulus Cells. Reprod Sci 2020; 27:621-630. [PMID: 31939198 DOI: 10.1007/s43032-019-00063-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Caseinolytic peptidase P (CLPP) plays a central role in mitochondrial unfolded protein response (mtUPR) and is required for maintaining protein homeostasis in the mitochondria. Global germline Clpp deletion causes female infertility and accelerated follicular depletion. In the current study, we aimed to characterize the role of CLPP in cumulus cell function, gene expression, and mitochondrial ultrastructure. We found that mitochondria in Clpp-deficient cumulus cells have a smaller aspect ratio (length/width) and have a larger coverage area (mitochondrial area/cytoplasmic area) under electron microscopy. These ultrastructural changes were accompanied with diminished expression of mitochondrial dynamics genes. RNA sequencing analysis revealed a significant change in genes related to cellular metabolism in Clpp-deficient cumulus cells compared to wild type. In addition, apoptosis and phagosome pathways were significantly affected. Immunofluorescence assessment confirmed increased apoptotic activity and decreased cell proliferation in cumulus oophorus complexes (COCs) of Clpp-deficient mice. Our findings demonstrate that deletion of CLPP results in significant structural and functional changes in cumulus cells and suggests that mtUPR is required for cumulus cell function.
Collapse
Affiliation(s)
- E Esencan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Z Jiang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.,AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - T Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.,Foundation for Embryonic Competence, Basking Ridge, NJ, 07920, USA
| | - M Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - G Soylemez-Imamoglu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - E Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
32
|
Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020; 10:biom10010135. [PMID: 31947673 PMCID: PMC7023176 DOI: 10.3390/biom10010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s.
Collapse
|
33
|
Zhang Y, Nguyen TTT, Shang E, Mela A, Humala N, Mahajan A, Zhao J, Shu C, Torrini C, Sanchez-Quintero MJ, Kleiner G, Bianchetti E, Westhoff MA, Quinzii CM, Karpel-Massler G, Bruce JN, Canoll P, Siegelin MD. MET Inhibition Elicits PGC1α-Dependent Metabolic Reprogramming in Glioblastoma. Cancer Res 2019; 80:30-43. [PMID: 31694905 DOI: 10.1158/0008-5472.can-19-1389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/18/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
The receptor kinase c-MET has emerged as a target for glioblastoma therapy. However, treatment resistance emerges inevitably. Here, we performed global metabolite screening with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, and identified substantial reprogramming of tumor metabolism involving oxidative phosphorylation and fatty acid oxidation (FAO) with substantial accumulation of acyl-carnitines accompanied by an increase of PGC1α in response to genetic (shRNA and CRISPR/Cas9) and pharmacologic (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-glucose, U-13C-glutamine, and U-13C-palmitic acid) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species. Genetic interference with PGC1α rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that cAMP response elements binding protein regulates the expression of PGC1α in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and β-oxidation of fatty acids (etomoxir) enhanced the antitumor efficacy of c-MET inhibition. Synergistic cell death was observed with c-MET inhibition and gamitrinib treatment. In patient-derived xenograft models, combination treatments of crizotinib and etomoxir, and crizotinib and gamitrinib were significantly more efficacious than single treatments and did not induce toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibition and identified novel combination therapies that may enhance its therapeutic efficacy. SIGNIFICANCE: c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.
Collapse
Affiliation(s)
- Yiru Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, New York
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Junfei Zhao
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Consuelo Torrini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
34
|
Liu Y, Wang X, Zhen Z, Yu Y, Qiu Y, Xiang W. GRP78 regulates milk biosynthesis and the proliferation of bovinemammaryepithelial cells through the mTOR signaling pathway. Cell Mol Biol Lett 2019; 24:57. [PMID: 31660059 PMCID: PMC6805561 DOI: 10.1186/s11658-019-0181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucose-regulated protein 78 (GRP78) is a member of the HSP70 protein family and a key endoplasmic reticulum chaperone. It has been revealed to play important roles both in the maturation, folding and transport of proteins and in cellproliferation. However, its involvement in milk biosynthesis or the proliferation of bovine primary mammary epithelial cells (BMECs) has yet to be established. METHODS The expressions of GRP78 in BMECs stimulated with methionine, leucine, estrogen and prolactin were determined using western blotting and immunofluorescence assays. To explore the function of GRP78 in BMECs, the protein was overexpressed or knocked down, respectively using an overexpression vector or an siRNA mixture transfected into cells cultured in vitro. Flow cytometry was used to analyze cell proliferation and cell activity. The contents of lactose and triglyceride (TG) secreted from the treated BMECs were measured using lactose and TG assay kits, respectively. Western blotting analysis was used to measure the β-casein content and the protein levels of the signaling molecules known to be involved in milk biosynthesis and cell proliferation. RESULTS GRP78overexpression significantly stimulated milk protein and milk fat synthesis, enhanced cell proliferation, positively regulated the phosphorylation of mammalian target of rapamycin (mTOR), and increased the amount of protein of cyclinD1andsterol regulatory element-binding protein 1c (SREBP-1c). GRP78 knockdown after siRNA transfection had the opposite effects. We further found that GRP78 was located in the cytoplasm of BMECs, and that stimulating methionine, leucine, estrogen and prolactin expression led to a significant increase in the protein expression of GRP78 in BMECs. CONCLUSIONS These data reveal that GRP78 is an important regulator of milk biosynthesis and the proliferation of BMECs through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | | | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Yanbo Yu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Youwen Qiu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Wensheng Xiang
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| |
Collapse
|
35
|
Nguyen TTT, Ishida CT, Shang E, Shu C, Torrini C, Zhang Y, Bianchetti E, Sanchez‐Quintero MJ, Kleiner G, Quinzii CM, Westhoff M, Karpel‐Massler G, Canoll P, Siegelin MD. Activation of LXRβ inhibits tumor respiration and is synthetically lethal with Bcl-xL inhibition. EMBO Mol Med 2019; 11:e10769. [PMID: 31468706 PMCID: PMC6783693 DOI: 10.15252/emmm.201910769] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Liver-X-receptor (LXR) agonists are known to bear anti-tumor activity. However, their efficacy is limited and additional insights regarding the underlying mechanism are necessary. By performing transcriptome analysis coupled with global polar metabolite screening, we show that LXR agonists, LXR623 and GW3965, enhance synergistically the anti-proliferative effect of BH3 mimetics in solid tumor malignancies, which is predominantly mediated by cell death with features of apoptosis and is rescued by exogenous cholesterol. Extracellular flux analysis and carbon tracing experiments (U-13 C-glucose and U-13 C-glutamine) reveal that within 5 h, activation of LXRβ results in reprogramming of tumor cell metabolism, leading to suppression of mitochondrial respiration, a phenomenon not observed in normal human astrocytes. LXR activation elicits a suppression of respiratory complexes at the protein level by reducing their stability. In turn, energy starvation drives an integrated stress response (ISR) that up-regulates pro-apoptotic Noxa in an ATF4-dependent manner. Cholesterol and nucleotides rescue from the ISR elicited by LXR agonists and from cell death induced by LXR agonists and BH3 mimetics. In conventional and patient-derived xenograft models of colon carcinoma, melanoma, and glioblastoma, the combination treatment of ABT263 and LXR agonists reduces tumor sizes significantly stronger than single treatments. Therefore, the combination treatment of LXR agonists and BH3 mimetics might be a viable efficacious treatment approach for solid malignancies.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Chiaki Tsuge Ishida
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Enyuan Shang
- Department of Biological SciencesBronx Community CollegeCity University of New YorkBronxNYUSA
| | - Chang Shu
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Consuelo Torrini
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Yiru Zhang
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Elena Bianchetti
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | | | - Giulio Kleiner
- Department of NeurologyColumbia University Medical CenterNew YorkNYUSA
| | | | - Mike‐Andrew Westhoff
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Peter Canoll
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Markus D Siegelin
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| |
Collapse
|
36
|
Boucherat O, Peterlini T, Bourgeois A, Nadeau V, Breuils-Bonnet S, Boilet-Molez S, Potus F, Meloche J, Chabot S, Lambert C, Tremblay E, Chae YC, Altieri DC, Sutendra G, Michelakis ED, Paulin R, Provencher S, Bonnet S. Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019; 198:90-103. [PMID: 29394093 DOI: 10.1164/rccm.201708-1751oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer-like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. OBJECTIVES We hypothesized that mtHSP90 in PAH-PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. METHODS Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria-targeted HSP90 inhibitor, was tested in fawn-hooded and monocrotaline rats. MEASUREMENTS AND MAIN RESULTS We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH-PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH-PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH-PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn-hooded rat). CONCLUSIONS Our data show for the first time that accumulation of mtHSP90 is a feature of PAH-PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Thibaut Peterlini
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Alice Bourgeois
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Valérie Nadeau
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sandra Breuils-Bonnet
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Stéphanie Boilet-Molez
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - François Potus
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jolyane Meloche
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sophie Chabot
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Caroline Lambert
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Eve Tremblay
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Young Chan Chae
- 2 Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania; and
| | - Dario C Altieri
- 2 Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania; and
| | - Gopinath Sutendra
- 3 Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Roxane Paulin
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Steeve Provencher
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sébastien Bonnet
- 1 Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
37
|
Sugiyama Y, Shudo T, Hosokawa S, Watanabe A, Nakano M, Kakizuka A. Emodin, as a mitochondrial uncoupler, induces strong decreases in adenosine triphosphate (ATP) levels and proliferation of B16F10 cells, owing to their poor glycolytic reserve. Genes Cells 2019; 24:569-584. [PMID: 31234244 DOI: 10.1111/gtc.12712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
Abstract
Many types of cancer cells show a characteristic increase in glycolysis, which is called the "Warburg effect." By screening plant extracts, we identified one that decreases cellular adenosine triphosphate (ATP) levels and suppresses proliferation of malignant melanoma B16F10 cells, but not of noncancerous MEF cells. We showed that its active ingredient is emodin, which showed strong antiproliferative effects on B16F10 cells both in vitro and in vivo. Moreover, we also found that emodin can function as a mitochondrial uncoupler. Consistently, three known mitochondrial uncouplers also displayed potent antiproliferative effects and preferential cellular ATP reduction in B16F10 cells, but not in MEF cells. These uncouplers provoked comparable mitochondrial uncoupling in both cell types, but they manifested dramatically different cellular effects. Namely in MEF cells, these uncouplers induced three to fivefold increases in glycolysis from the basal state, and this compensatory activation appeared to be responsible for the maintenance of cellular ATP levels. In contrast, B16F10 cells treated with the uncouplers showed less than a twofold enhancement of glycolysis, which was not sufficient to compensate for the decrease of ATP production. Together, these results raise the possibility that uncouplers could be effective therapeutic agents specifically for cancer cells with prominent "Warburg effect."
Collapse
Affiliation(s)
- Yuma Sugiyama
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| | - Toshiyuki Shudo
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| | - Sho Hosokawa
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| | - Aki Watanabe
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| | - Masaki Nakano
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
39
|
Down-regulation of STIP1 regulate apoptosis and invasion of glioma cells via TRAP1/AKT signaling pathway. Cancer Genet 2019; 237:1-9. [PMID: 31447061 DOI: 10.1016/j.cancergen.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, many studies have confirmed that STIP1 (phosphorylation-induced protein 1) is involved in the development and progression of various tumors. However, its potential role in glioma progression and the underlying mechanisms of glioma development remain unclear. METHODS We analyzed the expression of STIP1 in 35 human glioma tissue specimens of different grades, using 6 normal brain tissues for comparison. We transfected U87 and U251 cell lines with small interfering RNA (siRNA) to downregulate STIP1, and set up a negative control group and a blank group for comparison. The MTT assay was used to detect cell proliferation, and cell cycle progression and apoptosis were analyzed through flow cytometry. Transwell experiments were employed to detect the invasion and migration of STIP1-depleted and control U87 and U251 cells and western blotting was used to detect the expression of TRAP1/Akt pathway proteins. In addition, immunohistochemical analysis was used to reveal differences in expression and localization between transplanted tumor specimens of each group. RESULTS We observed a high expression of STIP1 in glioblastoma, MTT assay revealed a decreased cell proliferation rate in the STIP1-downregulated cells. Cell cycle analysis revealed an increased proportion of cells in G1 phase, as well as an increase in apoptosis, upon STIP1 downregulation. Western blotting showed that TRAP1, pAkt, and MMP2 expression was decreased upon STIP1 downregulation. In addition, TRAP1, ki-67, and MMP2 displayed a decreased expression in vivo. CONCLUSIONS STIP1 is highly expressed in glioblastoma compared to normal brain tissues. Downregulation of STIP1 in glioma cells reduces cell proliferation rate and invasion and increases cell apoptosis.
Collapse
|
40
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
41
|
Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals (Basel) 2019; 9:ani9030075. [PMID: 30823364 PMCID: PMC6466405 DOI: 10.3390/ani9030075] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Heat stress is an intriguing factor that negatively influences livestock production and reproduction performance. Sheep and goat are among the livestock that can adapt to environmental heat stress via a combination of physiological, morphological, behavioral, and genetic bases. Sheep and goat are able to minimize adverse effect of high thermal stress by invoking behavioral responses such as feeding, water intake, shade seeking, and increased frequency of drinking. Their morphological mechanisms are comprised of body shape and size, light hair color, lightly pigmented skin, and less subcutaneous fat, and the physiological means are that of increased respiration rate (RR), increased sweating rate (SW), reduced metabolic rate, and change in endocrine function. Adaptation in terms of genetics is the heritable trait of animal characteristics which favor the survival of populations. For instance, genes like heat shock proteins 70 (HSP70) and ENOX2 are commonly expressed proteins which protect animals against heat stress. Abstract Small ruminants are the critical source of livelihood for rural people to the development of sustainable and environmentally sound production systems. They provided a source of meat, milk, skin, and fiber. The several contributions of small ruminants to the economy of millions of rural people are however being challenged by extreme heat stress difficulties. Heat stress is one of the most detrimental factors contributing to reduced growth, production, reproduction performance, milk quantity and quality, as well as natural immunity, making animals more vulnerable to diseases and even death. However, small ruminants have successfully adapted to this extreme environment and possess some unique adaptive traits due to behavioral, morphological, physiological, and largely genetic bases. This review paper, therefore, aims to provide an integrative explanation of small ruminant adaptation to heat stress and address some responsible candidate genes in adapting to thermal-stressed environments.
Collapse
|
42
|
Xie B, Wang S, Jiang N, Li JJ. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 2018; 443:56-66. [PMID: 30481564 DOI: 10.1016/j.canlet.2018.11.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Shuangyan Wang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
43
|
Asha K, Sharma-Walia N. Virus and tumor microenvironment induced ER stress and unfolded protein response: from complexity to therapeutics. Oncotarget 2018; 9:31920-31936. [PMID: 30159133 PMCID: PMC6112759 DOI: 10.18632/oncotarget.25886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be activated by various pathological and physiological conditions including the unfolded protein response (UPR) to restore homeostasis. The UPR signaling pathways initiated by double-stranded RNA-activated protein kinase (PKR) like ER kinase (PERK), inositol requiring enzyme 1 α (IRE1α), and activating transcription factor 6 (ATF6) are vital for tumor growth, aggressiveness, microenvironment remodeling, and resistance to cancer therapeutics. This review focuses on the role of ER stress and activity of UPR signaling pathways involved in tumor formation and uncontrolled cell proliferation during various cancers and viral malignancies.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
44
|
Abstract
Mitochondria are sensitive to numerous environmental stresses, which can lead to activation of mitochondrial stress responses (MSRs). Of particular recent interest has been the mitochondrial unfolded protein response (UPRmt), activated to restore protein homeostasis (proteostasis) upon mitochondrial protein misfolding. Several axes of the UPRmt have been described, creating some confusion as to the nature of the different responses. While distinct molecularly, these different axes are likely mutually beneficial and activated in parallel. This review aims at describing and distinguishing the different mammalian MSR/UPRmt axes to define key processes and members and to examine the involvement of protein misfolding.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Chhipa RR, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, Chen X, Waclaw R, Chow LM, Khuchua Z, Kofron M, Weirauch MT, Kendler A, McPherson C, Ratner N, Nakano I, Dasgupta N, Komurov K, Dasgupta B. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol 2018; 20:823-835. [PMID: 29915361 PMCID: PMC6113057 DOI: 10.1038/s41556-018-0126-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.
Collapse
Affiliation(s)
- Rishi Raj Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA, USA
| | - Qiang Fan
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jane Anderson
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Yan Huang
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Georgianne Ciraolo
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Division of Center for Autoimmune Genomics and Etiology and Biomedical Informatics and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ronald Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati, OH, USA
| | - Lionel M Chow
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zaza Khuchua
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Sechenov University, Department of Biochemistry, Moscow, Russian Federation
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Center for Autoimmune Genomics and Etiology and Biomedical Informatics and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christopher McPherson
- Department of Neurosurgery, Brain Tumor Center, University of Cincinnati Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati, OH, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama, Cincinnati, OH, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati, OH, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 2018; 37:4058-4072. [PMID: 29695835 PMCID: PMC6062502 DOI: 10.1038/s41388-018-0247-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Targeting RAS is one of the greatest challenges in cancer therapy. Oncogenic mutations in NRAS are present in over 25% of melanomas and patients whose tumors harbor NRAS mutations have limited therapeutic options and poor prognosis. Thus far, there are no clinical agents available to effectively target NRAS or any other RAS oncogene. An alternative approach is to identify and target critical tumor vulnerabilities or non-oncogene addictions that are essential for tumor survival. We investigated the consequences of NRAS blockade in NRAS-mutant melanoma and show that decreased expression of the telomerase catalytic subunit, TERT, is a major consequence. TERT silencing or treatment of NRAS-mutant melanoma with the telomerase-dependent telomere uncapping agent, 6-thio-2'-deoxyguanosine (6-thio-dG), led to rapid cell death, along with evidence of both telomeric and non-telomeric DNA damage, increased ROS levels, and upregulation of a mitochondrial antioxidant adaptive response. Combining 6-thio-dG with the mitochondrial inhibitor Gamitrinib attenuated this adaptive response and more effectively suppressed NRAS-mutant melanoma. Our study uncovers a robust dependency of NRAS-mutant melanoma on TERT, and provides proof-of-principle for a new combination strategy to combat this class of tumors, which could be expanded to other tumor types.
Collapse
|
47
|
Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function. Oncotarget 2018; 8:45656-45669. [PMID: 28484090 PMCID: PMC5542216 DOI: 10.18632/oncotarget.17321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Protein quality control is an important component of survival for all cells. The use of proteasome inhibitors for cancer therapy derives from the fact that tumor cells generally exhibit greater levels of proteotoxic stress than do normal cells, and thus cancer cells tend to be more sensitive to proteasome inhibition. However, this approach has been limited in some cases by toxicity to normal cells. Recently, the concept of inhibiting proteostasis in organelles for cancer therapy has been advanced, in part because it is predicted to have reduced toxicity for normal cells. Here we demonstrate that a fraction of the major stress-induced chaperone HSP70 (also called HSPA1A or HSP72, but hereafter HSP70) is abundantly present in mitochondria of tumor cells, but is expressed at quite low or undetectable levels in mitochondria of most normal tissues and non-tumor cell lines. We show that treatment of tumor cells with HSP70 inhibitors causes a marked change in mitochondrial protein quality control, loss of mitochondrial membrane potential, reduced oxygen consumption rate, and loss of ATP production. We identify several nuclear-encoded mitochondrial proteins, including polyadenylate binding protein-1 (PABPC1), which exhibit decreased abundance in mitochondria following treatment with HSP70 inhibitors. We also show that targeting HSP70 function leads to reduced levels of several mitochondrial-encoded RNA species that encode components of the electron transport chain. Our data indicate that small molecule inhibitors of HSP70 represent a new class of organelle proteostasis inhibitors that impair mitochondrial function in cancer cells, and therefore constitute novel therapeutics.
Collapse
|
48
|
Barbosa IA, Vega-Naredo I, Loureiro R, Branco AF, Garcia R, Scott PM, Oliveira PJ. TRAP1 regulates autophagy in lung cancer cells. Eur J Clin Invest 2018; 48. [PMID: 29383696 DOI: 10.1111/eci.12900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Expression of TRAP1, a member of the HSP90 chaperone family, has been implicated in tumour protective effects, based on its differential mitochondrial localization and function. DESIGN This work was designed to provide new insights into the pathways involved in TRAP1-provided cytoprotection on NSCLC. For this, TRAP1-depleted A549 human NSCLC cells and MRC-5 normal lung fibroblasts were produced using a siRNA approach and main cellular quality control mechanisms were investigated. RESULTS TRAP1-depleted A549 cells displayed decreased cell viability likely due to impaired mitochondrial function including decreased ATP/AMP ratio, oxygen consumption and membrane potential, as well as increased apoptotic indicators. Furthermore, the negative impact of TRAP1 depletion on mitochondrial function was not observed in normal MRC-5 lung cells, which might be due to the differential intracellular localization of the chaperone in tumour versus normal cells. Additionally, A549 TRAP1-depleted cells showed increased autophagic flux. Functionally, autophagy inhibition resulted in decreased cell viability in both TRAP1-expressing and TRAP1-depleted tumour cells with minor effects on MRC-5 cells. Conversely, autophagy stimulation decreased cell viability of both A549 and MRC-5 TRAP1-expressing cells while in A549 TRAP1-depleted cells, increased autophagy augmented viability. CONCLUSIONS Our results show that even though TRAP1 depletion affects both normal MRC-5 and tumour A549 cell proliferation, inhibition of autophagy per se led to a decrease in tumour cell mass, while having a reduced effect on the normal cell line. The strategy of targeting TRAP1 in NSCLC shows future potential therapeutic applications.
Collapse
Affiliation(s)
- Inês A Barbosa
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Ana F Branco
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Rita Garcia
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| |
Collapse
|
49
|
Ishida CT, Shu C, Halatsch ME, Westhoff MA, Altieri DC, Karpel-Massler G, Siegelin MD. Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget 2018; 8:37140-37153. [PMID: 28415755 PMCID: PMC5514897 DOI: 10.18632/oncotarget.16202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas display high levels of the transcription factor c-myc and organize a tumor specific chaperone network within mitochondria. Here, we show that c-myc along with mitochondrial chaperone inhibition displays massive tumor cell death. Inhibition of mitochondrial matrix chaperones and c-myc was established by utilizing genetic as well as pharmacological approaches. Bromodomain and extraterminal (BET) family protein inhibitors, JQ1 and OTX015, were used for c-myc inhibition. Gamitrinib was applied to interfere with mitochondrial matrix chaperones. A xenograft model was used to determine the in vivo efficacy. Combined inhibition of c-myc and mitochondrial matrix chaperones led to a synergistic reduction of cellular proliferation (CI values less than 1) in established glioblastoma, patient-derived xenograft and stem cell-like glioma cultures. The combinatorial treatment of BET inhibitors and Gamitrinib elicited massive apoptosis induction with dissipation of mitochondrial membrane potential and activation of caspases. Mechanistically, BET-inhibitors and Gamitrinib mediated a pronounced integrated stress response with a PERK-dependent up regulation of ATF4 and subsequent modulation of Bcl-2 family of proteins with down-regulation of Mcl-1 and its interacting partner, Usp9X, and an increase in pro-apoptotic Noxa. Blocking ATF4 by siRNA attenuated Gamitrinib/BET inhibitor mediated increase of Noxa. Knockdown of Noxa and Bak protected from the combinatorial treatment. Finally, the combination treatment of Gamitrinib and OTX015 led to a significantly stronger reduction of tumor growth as compared to single treatments in a xenograft model of human glioma without induction of toxicity. Thus, Gamitrinib in combination with BET-inhibitors should be considered for the development for clinical application.
Collapse
Affiliation(s)
- Chiaki Tsuge Ishida
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
50
|
A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines. Clin Oral Investig 2018; 22:2251-2262. [PMID: 29307045 DOI: 10.1007/s00784-017-2323-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) shows increased radioresistance due to the manipulation of homeostatic mechanisms like the heat shock response. This study intended to comparatively analyze effects of ionizing radiation on different HNSCC cell lines (PCI) and normal human dermal fibroblasts (NHFs) and human dermal microvascular endothelial cells (HDMECs) to uncover differences in radiation coping strategies. MATERIALS AND METHODS Proliferation (BrdU assay), apoptosis (caspase 3/7) and intracellular protein expression of heat shock protein (HSP)-70, and phosphorylated and total HSP27, determined by enzyme-linked immunosorbent assay (ELISA), were analyzed after exposure to increasing doses of ionizing radiation (2, 6, and 12 Gray, Gy). RESULTS Cell count decreased dose-dependently, but PCI cell lines consistently showed higher numbers compared to NHF and HDMEC. Likewise, high doses reduced cell proliferation, but low-dose radiation (2 Gy) instead increased proliferation in PCI 9 and 52. Apoptosis was not detectable in PCI cell lines. Basic HSP70 expression was high in PCI cells with little additional increase by irradiation. PCI cells yielded high basic total HSP27 concentrations but irradiation dose-dependently increased HSP27 in HDMEC, NHF, and PCI cells. Phosphorylated HSP27 concentrations were highest in NHF. CONCLUSION PCI cell lines showed higher resistance to dose-dependent reduction in cell number, proliferation, and protection from apoptosis compared to NHF and HDMEC. In parallel, we observed a high basic and radiation-induced expression of intracellular HSP70 leading to the assumption that the radioresistance of PCI cells is conferred by HSP70. CLINICAL RELEVANCE HNSCC use HSP to escape radiation-induced apoptosis and certain subtypes might increase proliferation after low-dose irradiation.
Collapse
|